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We illustrate ways to visualize treatment effects 
using graphical displays of information from within and 
across “clusters” of patients who have been relatively 
well matched on their baseline covariate characteristics.  
We start by motivating use of methods for unsupervised 
learning to bypass not only parametric estimation of 
unknown, true propensity scores but also the need to 
check that conditional covariate independence has been 
achieved.  We then show how nearest neighbor (NN) 
methods that emphasize within-cluster outcome 
differences due to treatment systematically differ from 
the instrumental variable (IV) approach that models 
within-cluster average outcome regardless of treatment 
as a function of treatment imbalance across clusters.  
Detecting differential patient response to treatment then 
involves fitting mixture-density models to the observed 
distribution of local average treatment effect (LATE) 
differences in outcome(s).  A major advantage of the 
proposed graphical, clustering approaches is that they 
encourage use of up-front sensitivity analyses, where 
the analyst varies the number of clusters and explores 
both alternative clustering algorithms and alternative 
metrics for defining dissimilarity between subjects.  

 
1.0 Introduction 

The tutorial by D’Agostino(1998) provides a good 
introduction to the three most commonly used 
approaches to Propensity Score (PS) adjustment for 
treatment selection bias.  The sub-classification or 
“binning” approach is firmly based upon the early work 
of Cochran(1968).  Personally, I first explored nearest 
neighbors matching as a substitute for a more formal 
statistical model in a Bell System measurement plan, 
Obenchain(1979). But it was Rosenbaum and 
Rubin(1983, 1984) who first discussed the covariate 
conditional independence property of patient matching 
on propensity score; see equations [2] and [2′] and their 
discussions below. 

Instrumental Variable (IV) methods for bias 
adjustment using patient matching and/or clustering 
have recently been emphasized in the econometric, 
medical and statistical literature; see Imbens and 
Angrist(1994), McClellan, McNeil and Newhouse 
(1994) and Angrist, Imbens and Rubin (1996), 

respectively.  Again, the most basic concepts here 
appear to be quite “old.”  For example, the most simple 
special case of IV estimation using clusters is identical 
to the “grouping estimator” of Wald(1940); see 
equations [4] and [5] and their discussion below. 

Treatment effects will be visualized here in much 
more general ways than just as a single degree-of-
freedom main-effect within an ANCOVA model.  In 
fact, we address the fundamental questions: Given data 
on two groups of patients, including their pre-treatment 
characteristics and their post-treatment outcomes, how 
might one go about making truly data-driven treatment 
comparisons? Does it make any real difference if 
patients/doctors selected the treatment thought to be 
best?  In other words, treatment selection bias may be 
present in the data, but we do assume that any 
deliberate treatment decisions were based upon 
observed, pre-treatment characteristics of the patients 
(evidence based medicine.) 

We then go on to describe our general strategy and 
tactics for identifying and quantifying treatment effects 
using non-overlapping clusters to focus attention upon 
differences in treatment outcomes from Nearest 
Neighbor (NN) patients who are relatively well 
matched on whichever pre-treatment characteristics are 
thought to be most relevant to the treatment outcome(s) 
of interest.  Our approach calls not only for visual 
display of the across-cluster distribution of within-
cluster (NN) local average treatment effect (LATE) 
differences but also for up-front sensitivity analyses 
about how the form of this distribution tends to vary 
with choice of [a] patient dissimilarity metric, [b] 
unsupervised learning algorithm, and [c] number of 
clusters. 

In prospective design of experiments, one objective 
of random assignment of treatment to experimental 
units is to increase the likelihood that the resulting 
treatment groups will be relatively well balanced on 
pre-treatment characteristics of the experimental units 
…both their known characteristics and, perhaps even 
more importantly, their unknown characteristics.  When 
pre-treatment characteristics (such as patient frailty and 
disease severity) impact likely treatment outcomes, 
analyses which ignore observed imbalance lead to 
biased (unfair) treatment comparisons. 

When patient groups receiving different treatments 
are observed to systematically differ on known baseline 
characteristics, due either to nonrandom treatment 
assignment or to relatively poor luck in randomization, 
a variety of methods are typically used to reduce or 



   

avoid bias in the resulting treatment effect estimates.  
These methods include covariate adjustment using 
regression models, propensity scoring adjustments 
based upon discrete choice models for treatment 
selection, and instrumental variable adjustment via 
simultaneous equations models.  Here, we show how 
these relatively well known methods actually suggest 
meaningful ways to define and summarize NN/LATE 
difference distributions. 

Our symbolic notation for variables (available or 
missing) for patients will be: y = observed outcome 
variable(s), t = observed treatment assignment (binary, 
0 or 1; usually non-random), x = observed pre-treatment 
characteristics [covariates, instrumental variables.] 

The (usually unknown) true propensity score for a 
patient is defined to be the conditional probability that 
the patient (or his/her doctor) will “select” treatment 
number one given the patient’s vector of pre-treatment 
x-characteristics: 

 
PS:  p  = p(x) = Pr( t  = 1 | x ) = E( t | x ).          [1] 

 
The fundamental conditional independence theorem 

of propensity scoring, Rosenbaum and Rubin (1983, 
1984), then states that 

 
Pr( x, t | p ) = Pr( x | p ) Pr( t | p ) [2]

  
In words, conditional upon any given numerical value 
of true propensity score, the distribution of baseline 
patient characteristics is statistically independent of 
treatment selection.  Mathematically, this theorem 
states that the joint distribution of x and t given the true 
PS must factor as in [2]. 

This is a relatively simple but truly profound result in 
statistics and probability that requires only very weak 
assumptions.  In fact, equation [2] appears to have at 
least four possible interpretations! 

[a] Propensity scores are known constants only in 
randomized studies.  Thus [2] can be viewed as the 
basis for randomized clinical trials in which entire 
treatment groups are expected to be directly comparable 
simply because true PS are identical for all patients. 

[b] Equation [2] is commonly called the “balancing” 
theorem because it describes the (expected) behavior of 
baseline covariate x-distributions when propensity 
scores are either known (and the randomization was 
relatively “lucky” or balanced) or can be estimated well 
from the available data (an “unlucky” randomization or 
treatment selection bias present.) 

[c] Equation [2] can also be viewed as establishing 
the need for blocking or Local Control (LC) analyses 
whenever propensity scores (local treatment admin-
istration fractions) vary widely across x-space. 

[d] Justifiable variation in propensity scores can be 
taken as the very definition of and motivation for 

evidence based medicine, which requires evidence of 
differential patient response to treatment. 

Additionally, Rosenbaum and Rubin (1983) point out 
that the true PS is the “most coarse” possible balancing 
score, while the x-vector itself is the most highly 
detailed balancing score: 

 
Pr( x, t ) ≡ Pr( x ) Pr( t | x ). [2′]

 
This is extremely important because patient x-vectors 

are usually observable (known) quantities while 
(coarse) PSs are usually unknown and must be 
estimated from the available data, say, via a discrete 
choice (logit or probit) model.  When the observed 
conditional distributions of baseline patient covariates 
and treatment choices “fail to factor” as in [2], this is 
quite rightfully interpreted as evidence that one’s fitted 
PS estimates are not even approximately correct.  In 
fact, we will argue below (Section 1.3) that there are 
distinct advantages to clustering of patients on their 
entire x-vectors rather than matching them “closely” on 
questionable, numerical PS guesstimates.   
 
1.1  The Non-randomized Abciximab Study 

Kereiakes et al. (2000) describe an 18 month study 
that collected two primary outcome measurements 
(total cardiac related cost and treatment effectiveness = 
expected life years preserved due to survival for at least 
6 months) for 996 Percutaneous Coronary Intervention 
(PCI) patients.  Researchers used careful telephone 
follow-up to augment hospital billing and cath-lab 
records for all patients who had received a PCI (or 
Percutaneous Transluminal Coronary Angioplasty) at 
Lindner within 1997. 
 
1.2 Fundamental “Clustering” Concepts 

As illustrated in Kereiakes et. al (2000), careful 
application of propensity scoring methods of 
adjustment for treatment selection bias requires great 
attention to detail, including at least the following 
“Three Initial Steps”: 
1. Parametric modeling of the treatment assignment 

mechanism, perhaps using a fitted linear functional 
of observed patient x-factors, to produce an 
estimated propensity score for each patient;  

2. Grouping of patients into, say, 5 adjacent bins 
(quintiles) using observed PS order statistics; and  

3. Testing for “balance” of x-factor distributions 
within each of these (relatively large) bins. 

Here we propose a highly graphical, computationally 
feasible way to bypass these three initial steps and yet 
end up with an even better (more robust) view of the 
effects adjusted for treatment selection bias and 
imbalance.  

See Kaufman and Rousseeuw(1990) for descriptions 
of newer methods for forming non-overlapping clusters 



   

of patients.  These methods have recently been 
implemented in R and are incorporated into the PS 
functions of Obenchain(2004.)  Clustering methods and 
mixture-density estimation, Fraley and Raftery(2002), 
are known in standard “data mining” terminology as 
unsupervised learning algorithms, Barlow(1989.)  In 
sharp contrast, regression models and discriminant 
analyses are supervised methods in the sense that an 
observed variable, y or t, is to be predicted from x.  
These observed variables can efficiently “guide” 
selection of (relatively smooth) functions of the x-
variables to make the needed predictions.  
Unsupervised methods need to identify patient and/or 
treatment outcome “closeness” relationships that may 
be impossible to visualize in only 2 or 3 dimensions! 

In other words, efficient clustering of patients in x-
space and outcomes in LATE difference space is a truly 
difficult (NP hard) problem, and “greedy” computing 
algorithms almost surely need to be avoided.  Our 
proposals for clustering approachs to adjustment for 
treatment selection bias thus definitely calls for 
“standing on the shoulders of computational giants.”   
 
1.3 Technical Problems in Estimation of Propensity 
“Balancing” Scores 

Consider the following explanation of why grouping 
of subjects on their estimated propensity scores does 
not automatically assure x-factor balance.  One’s 
prediction formula is frequently of the form  
 

PS = Pr(t =1| x) = function( x′′′′  ββββ ) for a specific, 
estimated ββββ vector, 

 
at least when using a logit or probit model.  In the 
above equation, x′′′′  ββββ is the fitted linear functional, and 
the elements of the β vector obviously need to be 
estimated to predict the “outcome” …which here is 
actually just a treatment assignment (0 or 1) indicator.  
Again, the real problem for the analyst is that he/she 
does not know whether “interaction” terms (products of 
two or more individual x variables) or “curvature” 
terms (powers of individual x variables) will be needed.  
If the final x-vector (including cross terms and power 
terms) contains, say, 9 components, then x′′′′  ββββ = constant 
actually defines an unbounded 8-dimensional 
hyperplane (linear subspace) embedded within 9-
dimensional x-space. 

The important thing to note here is that two different 
subjects with the exact same PS estimates may still 
have very different x-vectors, x1 and x2.  All we really 
know for sure here is simply that x1′′′′  ββββ = x2′′′′  ββββ for one 
specific vector of ββββ estimates. 

“Cluster-binning” of patients (especially when 
clusters are relatively numerous and small) assures that 
any two subjects within the same cluster will be fairly 

well matched on all components of their entire x-
vectors.  Here, we denote this by x1 ≈≈≈≈ x2 …where “≈” 
denotes “approximately equal.”  Note that x1′′′′  ββββ ≈≈≈≈ x2′′′′  ββββ 
would then follow for a variety of different ββββ vectors.  
In other words, the numerical values of x′′′′ ββββ will be 
assured to be approximately equal for all patients within 
any relatively compact cluster simply because their 
corresponding x-vectors are then nearly equal!   

Furthermore, x1 ≈≈≈≈ x2 within any single cluster is the 
very definition of x-factor “balance” when the two 
subjects (numbered 1 and 2 here) being compared 
actually received different treatments. 

In fact, let us now consider a heuristic restatement of 
the fundamental “balancing” theorem in which we 
condition upon cluster-bin membership rather than 
upon propensity score.  Suppose that the current 
clusters are C = 1, 2, …, K and that we are interested in 
the joint distribution of patient x-characteristics and t-
selections within a cluster: 

 
Pr( x, t | C ) ≡ Pr( x | C ) Pr( t | x, C ) 

≈ Pr( x | C ) Pr( t | C ) 
 
[2′′ ]

 
The first line in equation [2′′ ] again follows from the 

very definition of conditional probability.  When a 
cluster is relatively compact, the Pr( x | C ) distribution 
should tend to be both unimodal and fairly tight about 
the cluster x-centroid.  Furthermore, if treatment 
selection [t = 0 or 1] does not depend upon the highly 
limited x-variation allowed within a cluster, then Pr( t | 
x, C ) ≈ Pr( t | C ) = expected fraction of patients with t 
= 1 within cluster C. 

Conditioning upon membership in the same x-cluster, 
as in [2′′ ], is conceptually somewhere between the two 
possible extremes of “most coarse” and “most detailed” 
balancing score whenever clusters are relatively 
numerous and thus are both small and compact. 
 
2. Hierarchical Clustering of Subjects in x-Space 

The objective of this sort of analysis is to partition 
subjects with observed x-factors into disjoint subsets 
(clusters) such that:  

• Subjects within a cluster are as similar as 
possible on their x-factors, and  

• Subjects in different clusters are as dissimilar 
as possible on their x-factors.  

 
2.1  Choice of Patient Dissimilarity Metric 

The underlying concept needed for partitioning of a 
set of objects into subgroups or clusters is a metric for 
measuring dissimilarity between pairs of patients. A 
variety of distance and similarity measures, such as the 
Dice coefficient, the Jaccard coefficient and the cosine 
coefficient, are apparently widely used.  The algorithms 



   

illustrated here in the abciximab case study use 
Mahalanobis distance, Rubin (1980): 

12 ˆ( ) ( )ij i j i jd x x x x
−

 ′= − Σ −  .      [3] 

Suppose that some patient x-characteristics are 
qualitative factors with either only relatively few levels 
or else unordered levels.  The analyst may then wish to 
require that all patients within the same cluster match 
exactly on this particular x.  Alternatively, an x-factor 
with k levels can be recoded as k−1 “dummy” (binary) 
variables in equation [3]. 

If certain x-covariates are being used primarily as 
“instrumental variables,” the analyst may wish to give 
extra weight to these variables in defining patient 
dissimilarity.  For example, McClellan, McNeil and 
Newhouse (1994) used approximate “distance from the 
hospital of admission” (derived from ZIP codes) as 
their initial, key variable in clustering 205,021 elderly 
patients; the only other available x-characteristics were 
age, sex and race.  With such a gigantic number of 
subjects, the logical strategy is to start by stratifying 
patients into several distinct distance-from-the-hospital 
“bands.”  Smaller clusters can be easily formed within 
these initial strata by, say, matching patients on both 
sex and race and then grouping them into age ranges. 
 
2.2   Choice of Clustering Algorithm 

Agglomerative (bottom-up) clustering methods start 
with each subject in his/her own cluster and iteratively 
combine subjects and/or clusters of subjects to form 
larger and larger clusters.  This is the “natural” way to 
do unsupervised analyses, and the vast majority of 
clustering algorithms do work this way.  

Divisive (top-down) clustering methods start with a 
single cluster containing all subjects.  Some rather new 
unsupervised algorithms, such as the “diana” method of 
Kaufman and Rousseeuw (1990), are divisive. 

Different choices for Number of Clusters can then be 
explored using the clustering “dendrogram,” see Figure 
3.2.1 below.  This graphic depicts the complete 
“hierarchical” structure derived using a specific patient 
dissimilarity metric and a specific clustering algorithm.  
Selecting overall numbers of clusters involves 
determining heights for a set of horizontal lines that cut 
across the dendrogram (tree) and produce the desired 
alternative numbers of clusters. 
 
3.0  Nearest Neighbor (NN) Plots 

Let us now consider a “NN snowball plot” to 
graphically display within-cluster-bin treatment 
differences and across-bin weighted averages.  For 
example, in Figure 3.0.1, each within-bin average 
outcome difference (treated minus untreated) provides 
the horizontal coordinate for a circular plotting symbol, 
while the corresponding standard deviation provides the 

vertical coordinate.  Finally, the area of the snowball 
represents the total number of patients (regardless of 
treatment choice) within that cluster-bin.  In addition to 
a solid vertical line corresponding to an outcome 
difference of zero between treatments, the weighted 
averages across bins, with weights either (i) 
proportional to total number of patients or (ii) inversely 
proportional to the variance of the estimated treatment 
difference, are also shown using vertical lines that are 
dashed and dotted, respectively. 
While different cluster-bins may be of very different 
overall sizes (total number of patients regardless of 
treatment), here they are equal (199 or 200 patients 
each.)  Finally, by specifically displaying within-bin 
measures of uncertainty (vertical coordinates of 
snowballs), NN plots illustrate key issues related to 
homoscedasticity (constant variance) assumptions 
commonly made in parametric regression and 
econometric models. 
 
Figure 3.0.1 “NN Snowball Plot” with 5 PS Bins for 
the LATE distribution of Abciximab on Cost 
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3.1   “Pure,” “Impure” and “Fully Informative” 
Cluster-Bins 

Since subjects are being clustered solely on the basis 
of their x-characteristics, the outcome variables, y, and 
treatment assignment variable, t, may take on 
essentially any values (consistent with the available 
data) for the subjects within any single cluster.  Here, a 
cluster will be said to be “pure” if all subjects within 
that cluster were assigned to the same treatment (either 
all t = 0 or all t = 1.)  There is no possibility of 
observing any local outcome (y) difference between 
treatments using only subjects from within a “pure” 
cluster!  In this sense, NN methods end up “discarding” 
all outcome information that ends up being isolated 
within pure clusters. 



   

To be “fully informative” about a within-cluster local 
treatment difference without assuming homosce-
dasticity of outcomes, a cluster must contain at least 2 
patients on each treatment.  After all, this many patients 
are needed to compute the heteroscedastic standard 
errors of the two treatment outcome means and, thus, 
the conventional standard error of the resulting local 
treatment difference! 
 
3.2  NN plots for the Abciximab Case Study 

Let us now consider a variety of “highly visual” 
alternative NN analyses for our abciximab case study.  
As suggested in section 2.1, on “unsupervised” learning 
in analyses of non-randomized studies, the starting 
point for these analyses is the calculation of a 
dendrogram for hierarchical clustering of all 996 
patients on their observed, baseline x-characteristics 
…ignoring their ultimate “y” outcomes (survival for at 
least six months and accumulated cardiac related cost) 
as well as their “treatment” assignment (abciximab or 
usual-care-alone.)  The resulting dendrogram is 
displayed in Figure 3.2.1, below. 
  
Figure 3.2.1 Cluster-Bin Dendrogram for the 
Abciximab Study 

 
 

Once this sort of dendrogram has been computed, 
results for a wide range of alternative numbers of 
“cluster-bins” can be generated quite quickly and 
efficiently.  For example, Figures 3.2.2 (for 30 cluster-
bins) and 3.2.3 (for 90 cluster-bins) display abciximab 
cost adjustment results which turn out to be quite 
similar to those from “conventional” propensity 
(quintile) binning, as displayed in Figures 3.0.1.  With 
30 cluster–bins, the number of patients per bin ranged 
from 5 to 302.  When 90 cluster-bins (a relatively large 
number of bins for only 996 subjects) were requested, 
the number of patients per bin then ranged all of the 
way from 1 (with 32 bins of this minimum size) to 127 
(the single, largest bin.) 

Note, in particular, that “total cardiac related cost” 
differences (abciximab minus usual-care-alone) are 
displayed in Figure 3.2.3 for only the 34 “fully 
informative” cluster-bins out of the 90 requested. 

Twenty additional cluster-bins out of the original 90 
contained just one patient on one (or both) of the two 
treatments and the remaining 36 were “pure.”  No 
within cluster-bin treatment difference could be 
observed for these 36 cluster-bins …meaning that cost 
outcomes for 82 of the 996 patients had to be ignored in 
this particular analysis.  A wide range of treatment cost 
differences (from −$9,000 to +$18,000) as well as a 
wide range in uncertainty about within cluster-bin cost 
differences (up to almost ±$15,000) were also 
observed.  But alternative estimates of the overall main-
effect of treatment are embodied by the vertical lines in 
Figure 3.2.3.  The dotted vertical line at +$2,921 
(±$428) represents the inverse-variance weighted 
average cost increase (abciximab minus usual-care-
alone) while the dashed line at +$1,432 (±$672) is the 
average cost increase resulting from weighting within-
cluster differences by the overall size of each cluster 
(total number of patients within that cluster.) 
 
Figure 3.2.2:  NN Plot for 30 Requested Clusters 

 
 
Figure 3.2.3:  NN Plot for 90 Requested Clusters 

 



   

 
4.  Simultaneous Equations Models with 
Instrumental Variables 

While we have seen some rather obvious advantages 
of using cluster-bins with propensity scoring, having to 
disregard information from “pure” bins could be a 
disadvantage. Thus, let us now consider using cluster-
bins with econometric instrumental variable (IV) 
methods to fit models across ALL cluster-bins. 

 For example, for the first two clusters, the “local” IV 
estimator corresponds to connecting those clusters with 
a straight line on the graph where mean within cluster 
health outcome (regardless of treatment) is plotted 
against a non-parametric estimate (fraction treated) of 
within-cluster propensity (PS) to receive treatment: 

 

 E( | 1) E( | 2)
Pr( 1| 1) Pr( 1| 2)

IV y C y C
t C t C

β = − ==
= = − = =

   .         [4] 

In other words, the IV estimate of the causal beta-
coefficient is a simple ratio of mean differences.  The 
denominator propensity score estimates in [4] play a 
key role in econometric IV modeling approaches to 
adjustment for treatment selection bias. 

When many cluster-bin centroids are plotted on the 
“IV plane,” an obvious generalization of the pairwise 
IV approach would be to fit a line (or smoothing spline) 
through all of these centroids.  The line of best fit to 
this scatter of cluster centroids can usually be visualized 
as a weighted average over all pairwise IV estimands 
resulting from connecting pairs of distinct centroids.  
Specifically, equation (3.1) of Wu(1986) can be 
rewritten as 

( ) ( )
n

ij ij ij i j i j
i< j

= for /OLS IV IVw y y x xβ β β = − −∑ ,      [5] 

where the weight given to a pair of cluster-bin centroids 
to produce the overall OLS estimate is proportional to 
the square of their separation along the x (propensity 
score) axis, 

( ) ( )
n2 2

ij i j i j
i < j

/w x x x x= − −∑ . 

The above sort of “smoothing through cluster 
centroids” reasoning appears to be the primary 
motivation for the clustering approach of McClellan, 
McNeil and Newhouse (1994); see their Figure 1. 
 
5.  Instrumental Variable (IV) Plots 

In this section, we define the graphical elements of an 
“IV plot,” discuss the extreme cases where the number 
of cluster-bins is either very small or very large, and 
display and interpret a pair of IV plots for the cost 
outcome in the abciximab case study. 

Note that econometric “IV Plots” display information 
from the “pure” cluster-bins that must be discarded 
when visualizing local treatment differences using “NN 

Plots.”  While attempting to use only relatively few 
clusters tends to avoid “pure” clusters, using relatively 
many clusters (and thus forcing some clusters to be 
pure) frequently appears to be needed to coerce the 
resulting “IV Plot” into agreeing (at least 
approximately) with the corresponding “NN Plot!” 

Varying the number of clusters used provides visual 
"sensitivity analyses" for comparing the NN and IV 
approaches.  Researchers need to be able to literally 
“see” which of these alternative analyses appear to be 
most realistic, relevant and robust for their data …not 
just which approach is “generally” recommended. 
 
5.1  IV Plots for the Abciximab Case Study 

Let us now discuss the “IV adjustment” analyses 
displayed in Figures 5.2.1 and 5.2.2 for 30 and 90 
cluster-bins, respectively.  Here we are looking at 
within-bin average cost (regardless of treatment 
assignment) plotted versus within-bin estimates of 
propensity score expressed as a percentage of patients 
treated with abciximab within each cluster-bin.  Instead 
of ignoring “pure” cluster-bins in these graphics, pure 
cluster-bins now contribute observed results at the left-
hand and right-hand extremes, 0% and 100% of 
subjects treated with abciximab, respectively.  In fact, 
outcomes from these extreme cluster-bins may have 
high leverage on any fitted across-cluster smooth! 

 
Figure 5.2.1: IV Plot for 30 Requested Clusters  
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Note that Figure 5.2.1 represents a truly “very 
different” sort of result from all of the other abciximab 
cost analyses displayed so far.  Specifically, the “IV 
adjustment” analysis using 30 (or fewer) cluster-bins 
quite clearly suggests that total cardiac related costs are 
expected to decrease with increased abciximab use. 

On the other hand, Figure 5.2.2 reconfirms instead 
our earlier cluster-bin analyses (Figures 3.3.2 and 3.3.3) 
…but only when using a relatively large number of 



   

cluster-bins (90 or more) in an “IV adjustment” 
analysis.  Because cluster-bins tend, on average, to be 
much smaller (as measured by total numbers of 
patients) when there are many more of them, these 
more numerous cluster-bins also tend to contain 
relatively “more well-matched” patients …and to 
produce estimates the are more realistic overall. 
 
Figure 5.2.2  IV Plot for 90 Requested Clusters  
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In my opinion, the problem in Figure 5.2.1 is that the 

x-covariates in the Kereiakes study are NOT 
instruments; they are clear predictors of mortality and, 
thus, of cost.  Instead of suggesting that abciximab 
treatment reduces cost, Figure 5.2.1 actually shows 
simply that early death truncates cost (i.e. relatively 
frail patients are more likely to be administered 
abciximab.) 
 
5.2  Extreme Numbers of Clusters: One per Subject 

versus One Overall 
Tables 5.3.1 and 5.3.2 as well as Figure 5.3.3, below, 

summarize my current opinions and/or best conjectures 
about the “optimal” number of cluster-bins for display 
in NN and IV plots when the objective is to adjust for 
selection bias when comparing treatments. 

 
Table 5.3.1.  Summary of Plot Content for Extreme 
Numbers of Cluster-Bins. 

 Case [a]: Only One 
Cluster 

 

Case [b]: Only 
Pure Clusters 

NN plot No Adjustment for 
Covariate 
Imbalance 

 

Plot is “Blank” 
(Zero 

Information) 

IV plot Plot void of 
Treatment 
Difference 

Information 

No Adjustment for 
Covariate 
Imbalance 

Table 5.3.2.  Conjectures about “Optimal” Numbers 
of Cluster-Bins. 

 Relatively Low 
Number of 

Clusters (Too 
Few?) 

  

Relatively High 
Number of Clusters 

(Too Many?) 

NN plot Relatively Little 
Bias Removal 

 

Uncertainty Inflation 
due to Pure Clusters 

IV plot Potential 
Conflict 

with PS Results 

More Consistency 
with PS Results 

 
Figure 5.3.3.  More Conjectures about Loss-of-
Information and “Optimal” Numbers of Cluster-
Bins in NN and IV Plots. 

5 N
Number of Clusters !!!!

Li
tt

le
 o

r 
N

o 
IV

 A
dj

u
st

m
en

t

NN not possible when 
all Clusters are Pure

IV not possible
with 1 Cluster

S
om

e 
IV

 A
dj

us
tm

en
t

O
pt

im
al

 I
V

 A
dj

u
st

1

To
o 

M
u

ch
 

In
fo

rm
at

io
n 

Lo
ss

Li
tt

le
 o

r 
N

o 
N

N
 A

dj
us

tm
en

t

So
m

e 
N

N
 A

dj
u

st
m

en
t

To
o 

M
u

ch
 

In
fo

rm
at

io
n 

Lo
ss

O
pt

im
al

 N
N

 A
dj

u
st

N/10
 

 
6. Discussion 

Perhaps randomized studies remain the “gold 
standard” for all types of scientific research.  This is 
unfortunate, especially in health outcomes research 
settings, where performing “prospective experiments” 
implies imposing enrollment / participation incentives 
that result in unrealistic (unnatural) behaviors from both 
patients and clinicians.  There is absolutely nothing 
wrong with using real-world data to try to realistically 
answer real-world questions!  On the other hand, it is 
quite obvious that more insights and much better 
insights could be developed if we had better (much 
more complete) data and better (interactive, graphical) 
analysis software.  For example, my “R” functions, 
Obenchain(2004), are clearly simplistic and primitive 
relative to the full spectrum of clustering concepts 
envisioned here. 

The NN plotting approach discussed here is 
interesting primarily because it directly addresses the 
highly relevant subject of the distribution of LATE 
differences in an “almost” non-parametric way.  In fact, 
the only obvious down-side of this approach is that 
taking this difference literally doubles the variance of 
the resulting outcome point-estimates.  And the clear 



   

plausibility of using mixture-density estimates to detect 
differential patient responses is truly exciting. 

In contrast, the IV plotting approach discussed here 
requires parametric (or semi-parametric) modeling 
across clusters.  By averaging outcomes across 
treatments within cluster-bins, at least IV methods 
thereby avoid doubling the variance in outcome point-
estimates.  But failing to examine LATE Differences 
still strikes me as being a very high price to pay. 

Figure 6.1 illustrates how point estimates and 
confidence intervals for the overall main-effect of 
treatment with abciximab (mean of its LATE difference 
distribution) on cardiac related cost for PCI patients 
varies with number of clusters. 
 
Figure 6.1: Cost Sensitivity Analysis Graphic 

 
NN Cluster Size Weighted Difference 

NN Inverse Variance Weighted Difference 
IV Predicted Total Treatment Difference 

 
Relative to the “unadjusted” observed difference 

(abciximab-plus-usual-care minus usual-care-alone) of 
+$1,513 (±$913), almost all of the other analyses 
(somewhat curiously) suggest that the true difference is 
either 

• smaller but with higher uncertainty, or else 
• larger but with possibly lower uncertainty. 
 

But can’t one really say much more here?  Perhaps 
we could if we had much better (more interactive) 
software for clustering patients and/or mixture-density 
decomposition of outcome LATE distributions.  But it 
is fascinating that our most clearly relevant 
comparisons (using 50 to 100 clusters for ~1000 
patients) are quite different from the two “extremes.” 

Anyway, the clear “good news” is that much more 
sensitive, robust and data-driven methods for assessing 
treatment effects will soon be available.  Meanwhile, 
the “bad news” is that these approaches will rely 
heavily on unsupervised learning methods that address 
the most challenging / difficult problems in statistics! 
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