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This User’s Guide defines syntax and illustrates use of functions that perform calculations and 
provide visualizations using the NU.Learning R-package ...the Nonparametric and 
Unsupervised learning approach that uses Clustering as "Matching" of experimental units within 
Cross-Sectional Datasets that represents a single point-in-time. 

Researchers with Longitudinal observational data (case-control studies and survival analyses) can 
use the "NearestNeighbor" and "CompetingRisks" functions from CRAN-package LocalControl.  

NU.Learning "aggregation" methods create x-Covariate distributions that are more “balanced” by 
clustering experimental units (patients) in x-Space. The units within each resulting local BLOCK 
are "relatively well-matched" at baseline. Frankly, data from "randomized" studies tend to be over-
valued; the exact distributional balance that is then "expected" in theory may not be even be 
approximately good in actual practice! Besides, randomized designs are less powerful than 
blocked designs! NU.Learning can literally "design" better balance into your Analyses of initially 
unbalanced data! 

Note specifically that, while exact "frequency" balance (such as some fixed ratio of "new" to 
"control" treated units within each BLOCK) is rarely achievable, LC Strategy produces unbiased 
estimates of local effect-sizes by weighting experimental units inversely proportional to their local 
sample size. Unfortunately, some BLOCKs can become "uninformative" because they contain only 
"new" units or only "control" units.  In any case, each estimate within the full distribution of 
"estimable" effect-sizes represents a relatively "fair" apples-to-apples comparison (Lopiano, 
Obenchain & Young, 2014).  
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1.  Introduction. 
 
The NU.Learning-package provides R functions that implement newer methods for analysis of 
observational data that are "Nonparametric" and use "Unsupervised learning." In other words, the 
methods implemented here are quite different from traditional fitting of parametric, regression-like 
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models ...models that tend to make many assumptions, rather strong assumptions, and even 
"wrong" or "unrealistic" assumptions (possibly yielding either over-fitting or over-simplification!)  
 
An inherent feature (and potential problem) with parametric models is that they are traditionally 
used to simultaneously not only estimate all sorts of "effects" from observed data but also to 
predict unobserved (or unobservable) results with the very same equation(s). Such predictions may 
be either interpolations within regions where experimental units (patients) are sparse or else 
extrapolations to regions where no data are currently available ...and perhaps never will be. 
 
NU.Learning focuses almost exclusively upon methods that "cluster" or "match" experimental 
units on all available data (Stuart, 2010). Specifically, patients are objectively formed into 
"subgroups" or "Blocks" within the x-space defined by their observed baseline x-Covariate 
characteristics. Then, by focusing on local estimation (within individual Blocks), both 
interpolation and extrapolation can be controlled. This control can typically be "strengthened" 
simply by making the number, K, of "blocks" larger. At least the average Size of "blocks" will 
decrease! 
 
Local treatment/exposure effect-size estimates are defined using the data within Blocks of 
experimental units and are deliberately chosen to be rather simple summary statistics, such as U-
statistics (Hoeffding 1948). Besides specifying numeric baseline x-Covariate characteristics, 
researchers wishing to apply NU Learning must also specify either a t-treatment indicator or a 
continuous e-exposure numerical measure …as well as a numeric y-Outcome variable that 
quantifies potential effects (or costs) associated with their treatment or exposure. The two types of 
effect-size estimates computed by functions within the NU.Learning-package are then: 
 

LTDs = Local Treatment Differences. These are within-cluster measures of Average 
Treatment Effect (ATE) of the form "new" minus "control" when t is binary. 

 
or 

 LRCs = Local Rank Correlations (Spearman). These within-cluster summary statistics 
are fully standardized measures of the slope of the fitted line in the “local 
regression” of y-Outcomes onto continuous e-exposure levels ...where observed 
numerical values are replaced by their within-cluster ranks.  

 
In spite of their higher demand on computing power, “local” approaches to adjustment for treatment 
selection bias and confounding end up offering two main advantages over traditional supervised 
(regression-like) learning methods… 

 
[1] At least when the number of clusters is relatively large (so that the number of patients 
within most clusters is relatively small), there is no need to formally test whether patients 
are relatively “well matched” on their baseline x-characteristics within clusters.  Clustering 
of patients on their x-Characteristics has assured that almost any model for prediction that is 
relatively smooth across x-Space would confirm that any within-cluster comparisons of 
treatment outcome differences are relatively “fair” comparisons (Lopiano, Obenchain & 
Young 2014). 
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[2] Results from clustering lend themselves well to use of graphical visualization and 
sensitivity analysis techniques. This allows researchers to literally "see" what they are doing! 
 
      For example, once a full "hierarchical clustering" Dendrogram (tree) has been 
constructed, displays using alternative numbers of clusters can be generated quickly.  Thus 
clustering approaches can provide not only fundamental, robust (non-parametric) insights 
but also highly relevant information about sensitivity of results to NU “tuning parameter” 
settings.  Furthermore, the resulting graphical displays can dramatically illustrate how 
traditional parametric modeling approaches (such as simultaneous equations, latent variables 
and hierarchical models) tend to emphasize some aspects of the data while de-emphasizing 
other aspects that could be equally important. 
 

Thanks to the considerable computing and graphical display power of modern personal computers, 
clustering / matching methods for analysis of observational data are becoming more and more 
practically useful.  This enables researchers with larger and larger datasets to both ask & answer 
key questions, like: “What is the full range of quantitative treatment effect-size estimates supported 
by the available data?”  Or: “Which patient subsets tend to have extreme outcomes?” 
 
Additionally, LC strategy is fully compatible with both “propensity scoring” (PS) methods [see 
Section §3 below] as well as with cluster-based “instrumental variable” (IV) adjustment 
methods (McClellan, McNeil and Newhouse, 1994).  Both of these approaches can adjust for 
treatment selection bias, characterized by imbalance in patient baseline characteristics between 
treatment groups (study arms, cohorts) in either nonrandomized or poorly randomized studies.   
 
Thus, in addition to the LTDs and LRCs introduced above (page 3), the NU.Learning -
package also provides functions for display of: 

 
Local Average Outcomes (LAOs) when x-confounders are assumed to be Instrumental 

Variables. 
 

LAO plots, displayed via plot(ivadj()), show how within-cluster y-Outcome 
averages vary across clusters. Here, the horizontal coordinate of a cluster is either [i] an 
observed Propensity Score (local fraction of units receiving the "new" rather than the 
"control" treatment), or else [ii] a Relative Exposure defined on [0, 1]. These analyses 
are valid only when all x-Covariates used to define clusters are assumed to be 
Instrumental Variables which effect y-outcomes at most indirectly ...i.e. only through 
treatment choice or exposure level. [Use of x-Covariates that measure disease severity 
or patient frailty is then questionable; such characteristics typically do have direct effects 
on y-Outcomes, thereby invalidating LAO plotting approaches.] 

 
“Unsupervised Propensity Scoring" was my original designation (deprecated R-package USPS) 
for all facets of NU Learning. Unsupervised methods typically use jargon from literature on 
artificial intelligence and data mining; see Barlow(1989).  Clustering methods proceed without 
receiving any “hints” from the designated y-Outcome measure or the t-treatment / exposure level 
to help “guide” formation of well-matched subgroups of experimental units within x-Space.  In 
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addition to clustering, multivariate probability density estimation is another well-known example 
of an unsupervised statistical method. 
 

The clustering / matching approaches implemented in NU.Learning are somewhat like 
the early suggestions of Rubin(1980). Unlike “supervised” (regression-like) methods that 
tend to be computationally efficient, genuinely "local" methods are sufficiently computer 
intensive that they were rather impractical before the advent of modern hardware 
and open-source statistical software. 
 
Some supervised methods do have to resort to numerical search methods over a p-
dimensional space of parameters (e.g. estimation of a logit or probit regression model) 
rather than use a closed form expression (such as that for ordinary least squares estimates 
in a linear regression model.)  On the other hand, some unsupervised methods need to 
compute all n×(n−1)/2 pair-wise comparisons between experimental units to "match" all 
study subjects.  The resulting increases in computing time and memory allocation due to 
use of unsupervised (Non-Polynomial Hard) methods can be enormous.  Besides, 
clustering results are typically highly sensitive to user choice of similarity metric and/or 
clustering algorithm. 

 
The computing algorithms discussed here are written in a dialect of Version 3 of the “S” language 
that is processed by the R interpreter, and are available for download from https://cran.r-project.org/. 
 
2.  The Four Phases of NU Learning 
 

All four phases of NU Learning are introduced and briefly outlined here in Section §2.  Together, 
the initial three phases constitute Nonparametric Preprocessing of observational data via Systematic 
Sensitivity Analyses. The decision to either continue accumulating information or else to transition 
to a final, ultimate Reveal phase of predictive analyses resides within the third LC Phase: Explore. 

 
 
Phase One: Aggregate 
 

Objective: Robustly Estimate LTD, LRC and/or LAO Effect-Sizes within specified 
subgroups of experimental units and display their Distribution across these same 
subgroups. 

 
Actions: For a specified choice of (a) which x-vector components to use, (b) which 

dissimilarity x-metric and clustering / matching algorithm to use, and (c) what number, K, 
of clusters (blocks of relatively well-matched units) to form, display the resulting 
(frequency weighted) across-block distribution of LTD, LRC and/or LAO effect-size 
estimates. 

 
 
Aggregation Phase support from NU.Learning-package functions: 
 

hclobj <- NUcluster(dframe, xvars, ...) 

https://cran.r-project.org/
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...designate which xvars are to be used in clustering. 

...name one of 8 possible clustering algorithms. 

...save resulting clustering Dendrogram (tree). 
 
NUe <- LCsetup(hclobj, dframe, trex, yvar) 

...designate trex variable (binary treatment or exposure). 

...designate yvar variable (y-outcome effect or cost). 

...save environmental output object from LCsetup(). 
 
ltdobj <- ltdagg(K, LCe, ...)  
lrcobj <- lrcagg(K, LCe, ...)  
ivobj  <- ivadj(x) 

...save output object for K = Number of Clusters requested. 
 
Phase Two: Confirm 
 

Objective: Eliminate Aggregations that Fail to yield clearly “Visible” Covariate Adjustment. 
 
Actions: Pretend that the x-confounders used in clustering are actually ignorable. 

Repeatedly permute the (y-outcome, t-exposure) pairs observed for individual 
experimental units across the same number of clusters (blocks) of the same sizes as those 
observed. This simulates purely random reassignment of experimental units to blocks, 
this time ignoring the numerical values of all x-confounder vectors. Next, compare this 
unadjusted NULL (random permutation) local effect-size distribution with the observed 
LTD or LRC effect-size distribution from the current x-based aggregation. Eliminate 
"uninteresting" aggregations where the observed distribution of local effect-size 
estimates is not clearly different in location, spread and/or shape from the purely-
random permutation NULL distribution. 

 
 
Confirm Phase support from NU.Learning-package functions: 
 

confobj <- confirm(x, ...) 
...where x is a ltdagg(K,e) or lrcagg(K,e) output object. 

KSpobj <- KSperm(x, ...) 
...where x is a confirm() output object. 

 
 
Phase Three: Explore 
 

Objective: Decide whether to Continue or to Terminate further attempts to generate and 
accumulate interesting alternative local effect-size distributions. 

 
Actions: Accumulate information on sensitivity of local effect-size distributions to the three 

primary LC Aggregation parameter settings: (a), (b) and (c) of Phase One.  How stable is 
the location, spread and shape of LTD or LRC effect-size distributions resulting from 
changes to the above three settings?  
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Explore Phase support from NU.Learning-package functions: 
 

NUcompare( NUe )  ...where NUe is the name of the environment 
         object output by LCsetup(). 
  
plot(ltdagg(), NUe), plot(lrcagg(), NUe) and/or plot(ivagg()).   

 
 
Phase Four: Reveal 
 

Objective: Determine whether an interesting distribution of local effect-size estimates 
appears to be either truly Heterogeneous (consists of predictable fixed-effects) or mostly 
Random (consists mainly of unpredictable deviations from any Exposure Main-Effect.) 

 
Actions: Researchers are released from any local / nonparametric restrictions on their attempts 

at global prediction of Local Effect-Size estimates from any of the "interesting" LTD or 
LRC distributions that have emerged from the first three Nonparametric Preprocessing 
phases of LC strategy. 

 
 
Reveal Phase support from NU.Learning-package functions: 
 

outdf <- reveal.data(x, clus.var="Clus", effe.var="eSiz") 
            ...where x is a ltdagg(K,e) or lrcagg(K,e) output object. 
   ...outdf also contains the xvars used by NUcluster(). 
 

plot(ivadj(x, ...)) 
            ...where x is a ltdagg(K,e) or lrcagg(K,e) output object. 
            ...displays both linear lm() and smooth.spline() fits. 

 
 

Stan Young and I have considerable personal experience applying the above Four-Phase NU 
Strategy over the last 7+ years. Stan initially proposed performing regressions within clusters when 
the treatment is an exposure (pm2.5, ozone, radon, etc.) We have found that NU Learning generally 
performs remarkably well; it has provided key insights into a wide variety of observational datasets 
that suffer from treatment selection bias and baseline x-Covariate confounding. 
 
When outcomes researchers with rather diverse perspectives collaborate in hope of developing a 
common (shared) "consensus view," team-findings within the NU Explore Phase of "sensitivity 
analyses" tend to be particularly helpful. 
 
Perhaps today's buzz about "data science" has resulted because more-and-more aspiring 
professionals with strong computing skills and keen practical insights have (somehow) helped data 
"owners" advance their business goals in new ways. On the other hand, development of truly valid 
("scientific") principles and methods for analysis of observational data would almost certainly be 
greatly expedited if much more "privately held" data were made truly public. Having "bigger and 



NU Learning in R Page 8 
 

better" data for more future researchers to "practice on" could be a distinct plus for advancement of 
statistical science! 
 
Government officials and regulators traditionally insist upon privacy of medical records to prevent 
health insurance discrimination. Yet, when asked, many patients with degenerative diseases 
(especially those with cancer) are apparently eager to contribute their de-identified health data for 
"research use." "Local" methods help preserve patient confidentially; LTDs or LRCs for patients 
with similar x-characteristics are apparently considered publishable whenever the subgroup size 
exceeds 10 (Standard Form CMS-R-0235L, 2012.) 
 
3.  Clustering and the Fundamental “Factoring” Theorem of Propensity Scoring 
 
Our basic notation for variables will be slightly different from that used by Rosenbaum and Rubin 
(Biometrika 1983 and JASA 1984)… 
 

y = observed outcome variable(s) 
x = observed baseline patient characteristic(s), covariate(s) and/or instrumental variable(s) 
t = observed treatment assignment/choice (either 0 or 1) or exposure level (continuous) 
u = unobserved explanatory variable(s) and unmeasured confounders 

 
Note that unobserved u variables may provide unknown, causal effects on outcomes, y.  In 
statistical/econometric models, it is the existence of u variables (as well as uncertainty in measuring 
y and x variables) that necessitates inclusion of “error terms” in parametric models.  
 
NOTE:  Patient level genome information is mostly a gigantic u–vector today (2023.)  More and 
more of this sort of information may soon be routinely used as x-variables. 
 
Rosenbaum and Rubin (R&R) defined Propensity Scores only for the case where treatment choice 
is binary: ti = 1 (new) or ti = 0 (control).  The propensity for choice "new" for (or by) the ith patient 
is formulated as being a function of only his/her given baseline x-characteristics… 
 

PS = p(xi) = Pr( ti = 1 | xi ) = E( ti | xi ).                                              [1] 
 
In words, the true propensity score of a patient is the conditional probability that he/she will receive 
treatment number one given his/her vector of observed, baseline characteristics, x. Thus "true" 
propensities are (conditional) probabilities, which are numbers between zero and one, inclusive.  
 

In many practical applications, only the rank orders of (estimated) propensity scores are needed.  
In this sense, any monotone transformation of a set of propensity scores are another set of 
propensity scores “equivalent” to the first set.  For example, when only one (univariate) x 
variable is found to be predictive of treatment choice/assignment, that single x variable may 
(itself) be called a propensity score. 
 
Apparently, one requirement of the above PS formulation is that each patient receives one and 
only one treatment.  In other words, the standard formulation may not apply to treatment of 
chronic conditions where a cross-over design accesses y-Outcome information on two (or more) 
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treatments applied during sequential periods to the same patient …separated by adequate “wash-
out” periods. 

 
Here, we will not attempt any sort of measure-theoretic proofs of propensity concepts. After all, the 
two original R&R propensity publications (Biometrika 1983 and JASA 1984) may only make 
complete sense under (Rubin's) "Potential Outcomes" framework, initially outlined in Holland 
(1986). Furthermore, the simplified notation used in these two R&R publications appears to treat x 
as being discrete and clearly assumes that t has only 2 levels.  Following this notational "tradition," 
we will not worry here about mathematical details for cases where components of x have continuous 
distributions or even when t can have more than 2 levels. In fact, we wish to address observational 
situations here where treatment t-levels are assumed to not be "strongly ignorable" given x 
[Biometrika (1983), Section §1⋅3]. 
 
In their JASA (1984) discussion of the “fundamental theorem” of propensity scoring, R&R outline 
a simple argument showing that the conditional distribution of baseline patient x-characteristics for 
given value of propensity {p(x) of equation [1]} must be statistically independent of the 
corresponding conditional treatment choice.  Conceptually, this simple argument implies that the 
joint distribution of x and t given p must factor as follows: Pr( x, t | p ) = Pr( x | p ) Pr( t | p ). 
 
A simple proof has four sequential steps, represented below in equations [2] through [5]: 
 

Pr( x, t | p ) ≡ Pr( x | p ) Pr( t | x, p ) 
= Pr( x | p ) Pr( t | x ) 
= Pr( x | p ) times p or (1−p) 
= Pr( x | p ) Pr( t | p ) 

[2] 
[3] 
[4] 
[5] 

 
PROOF: The factoring result given in line [2] follows from the very definition of conditional 
probability.  In line [3], one notes that conditioning upon both p = p(x) and x cannot contain 
information not provided by x alone.  In line [4], one notes simply that Pr( t | x ) must be either 
p(x) or [1 – p(x)].  Finally, in line [5], one concludes that, since Pr( t | x ) must be either p or (1–
p), then Pr( t | x ) must be the same as Pr( t | p ). 

 
In other words, x and t are, necessarily, conditionally independent variables given the propensity 
score, p = Pr( t = 1 | x ).  This is really a very simple theorem in statistics / probability that requires 
only rather weak assumptions.  In fact, the real “problem” in applications is simply that the functional 
form of the true PS is usually unknown and, thus, needs to be estimated from data! 
 
A "practically important" quibble about basic "propensity" terminology: 
 

Pr( x | p ) could be called the local "Blocking" Factor. All experimental units (receiving 
either new or control treatment) thus have the very same x-distribution whenever they 
have the same scalar value of p. 
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Pr( t | p ) is the local frequency "Balance" Factor. For all experimental units with the same 
scalar value of p, t = 1 (new treatment) occurs with probability p, while t = 0 (control 
treatment) occurs with probability 1−p. 

 
Note that true propensity values really do BLOCK experimental units, but true propensities are rarely 
known values ...except when analyzing data from truly randomized experiments. In propensity-
based analysis of observational data, propensity is typically estimated using parametric supervised 
learning (say, logistic regression). Unfortunately, estimated propensities are not guaranteed to have 
the desirable features of true propensities; for example, the assumed PS model can be wrong! 
 
"Blocking" and (frequency) "Balancing" are two distinctly different, fundamental concepts in 
classical Design of Experiments. Over the last 40 years, the propensity terminology introduced by 
R&R in their 1983 and 1984 papers appears to have "merged" traditional blocking and balancing 
concepts together. Analyses of observational data are now designed to "balance baseline x-covariate 
distributions across the new and control treatment cohorts". 
 
Here, I have simply called Pr( x, t | p ) = Pr( x | p ) Pr( t | p ) a "factoring" theorem. This terminology 
is unquestionably reasonable; it describes exactly what the equation literally says. However, for 
general use in practical applications, this equation may potentially be much more meaningfully 
described as attempting to "block" or "match" subgroups of experimental units in x-space. 
 

Cluster Membership is an asymptotic “Factoring Score.” 
 
Now let x denote a vector of baseline confounder values, let t denote either a binary treatment or 
continuous exposure level indicator, and let C denote a cluster (collection) of confounder x-vectors 
that includes a specific given x-vector and which was formed without reference to any information 
about the t (or y) characteristics of any and all experimental units. With Pr( | ) again denoting 
conditional probability, we further write:  

 
Pr( x, t | C ) ≡ Pr( x | C ) Pr( t | x, C )                                                                                           [6] 

 
= Pr( x | C ) Pr( t | x )   because x is within C, and C does not depend upon t        [7]  

 
→ Pr( x | C ) Pr( t | C )  in the limit as cluster C shrinks to contain only x.             [8] 

Note that: 
• As in equation [2], relationship [6] also follows from the basic definition of conditional 

probability. 
• Whenever cluster formation depends only upon the available x-vectors and thus does not 

depend in any way upon treatment, y, or exposure, t, the right-hand side of expression [6] can 
then be rewritten as [7]. 

• In the limit as the x-space maximum "diameter" of cluster C shrinks to zero, the given x then 
becomes the only interior point of C, and expression [8] holds asymptotically. 

 
The main practical implication of [8] is that the conditional distributions of x-vectors and t-levels 
are asymptotically independent within given clusters ...making cluster membership an asymptotic 
factoring score. 
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NOTES: R&R (1983) also argued [in their Theorem 2, equation (2⋅1)] that true propensity scores are the 
most "coarse" of all possible factoring scores. Since cluster membership is an asymptotic factoring score, it 
follows that cluster membership is asymptotically either equivalent to the unknown, true propensity score or 
else is more "fine" than true propensity. 
 
Indeed, R&R (1983, page 43) stated that the given x-confounder vectors of individual experimental units 
define the "finest" factoring scores. In practical applications, there may be essentially NO exact-matches in 
the high-dimensional x-space of primary interest. Yet, clusters of relatively well-matched experimental units 
could still exit in these situations.  
 

4.   LRC Example: Lung Cancer Mortality and 
Indoor Radon Exposure 

 
We use the radon dataset of Krstic(2016) here in Section §4 to illustrate use of functions from the 
LocalControlStrategy-package. We will start by taking a couple of preliminary "looks" 
at the marginal relationship between Lung Cancer Mortality and Indoor Radon Level for 2,881 US 
counties. Mortality is reported in deaths per 100,000 person-years, and Indoor Radon level is 
reported in picocuries per liter (pCi/L), rounded to a single decimal place. As a result, only 166 
different "rounded" radon exposure levels were observed across the 2,881 US counties. 

 
 
The R code used to generate the above plot is: 
 

plot(radon$radon, radon$lcanmort, col = "black", ann = FALSE) 
lmfit <- lm(radon$lcanmort ~ radon$radon) 
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abline(lmfit, lty = 2, col = "red") 
lines(smooth.spline(radon$lcanmort ~ radon$radon), col = "blue", lwd = 2) 
title(main = "Raw data on Lung Cancer and Radon Exposure",  
    xlab = "Radon Exposure: pCi/L", 
    ylab = "Lung Cancer Mortality", sub = "No Adjustment for County 
            Confounding Factors") 
 

Unfortunately, it's really not easy to "see" what is going on at low indoor radon exposure levels in 
the above plot. Thus we re-plot the data below using the natural logarithm of radon level on the 
horizontal axis. The indoor radon levels for 10 of the 2,881 counties were reported as 0.0 pCi/L, 
where log(0.0) = -Inf. Thus the lnradon variable simply "Winsorizes" these 10 values to 
log(0.05) ≈ -3. 
 

 
 
In this, our second preliminary "look" at the radon data, we see a general tendency for Lung 
Cancer Mortality rates to decrease (↓) as Indoor Radon Levels increase (→). Indeed, we have not 
yet used NU.Learning to make statistical "adjustments" for potentially important differences in 
known x-confounding characteristics of county residents across these 2,881 US counties.  
 
Since our NU analyses of the radon data will be based upon observed Rank Correlations within 
individual clusters of US counties, let us start by considering all 2,881 counties as constituting a 
single cluster. The observed Pearson and Rank correlations are then: 
 

Correlation attach() and stats::cor  function calls Value 
 attach(radon)  

Pearson cor(lcanmort, lnradon) -0.4099 
Rank  cor(lcanmort, lnradon, method = "spearman") -0.4483 
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Like our linear lm() and smooth.spline() fits displayed on the above plot, our correlation 
calculations also suggest that lung cancer mortality is negatively associated with indoor radon levels 
across the 2,881 US counties contained in the radon data.frame.   
 
Unless NU.Learning makes some really big "adjustments" for the x-Confounding characteristics 
of UC Counties, it's already relatively clear that current federal EPA policy and US state legislation 
requiring Indoor Radon Mitigation are NOT supported by the very data that regulators, themselves, 
have been amassing over the last 20+ years! 

 
Two Preliminary Steps are needed before initiating the 
very first "Round" of NU Learning on a new Dataset... 
 

 

# Load the NU.Learning-package Library into the current R session... 
 
library(NU.Learning) 
 
 

# Import (observational) Data  ...here the  radon data.frame of Krstic (2016). 
 
data(radon) 
 

# Additional Preliminary Steps needed when initiating 
each new "4-Phase Round" of Local Control Strategy... 

 
 

# Decide exactly "how many" and "which" baseline x-space characteristics of experimental  
# units will actually be used to form Clusters = BLOCKS of relatively "well-matched" 
units... 
 
xvars <- c("obesity","over65","cursmoke") 
 

# NOTE: The radon data contain information on two more potential x-confounder 
variables, evrsmoke and hhincome). However, when some variables appear 
(intuitively) "less important" than others, experimental units may be better 
"matched" by focusing on only fewer, more apparently relevant confounders. 

 
 
 
# Compute the Dendrogram (Tree) for unsupervised, nonparametric LC analyses: 
 
 
system.time( hclobj <- NUcluster(radon, xvars) )  # Clustering takes ~0.8 seconds. 
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NOTE: We simply use the default NUcluster( ) algorithm here: method = "ward.D"  
Seven other methods are also available: "diana", "ward.D2", "complete", 
"average", "mcquitty", "median" or "centroid". 
  
hclobj  # implicit print() 
 

NUcluster object: Hierarchical Clustering for U.Learning 
Data Frame input: radon 
Clustering algorithm used: ward.D 
Covariate X variables:[1] obesity  over65   cursmoke 

 
 
plot(hclobj) 

 
 
 
e <- NUsetup(hclobj, radon, lnradon, lcanmort) 
 

The Treatment variable is an Exposure with 166 levels. 
Local Treatment Difference (LTD) analyses are not applicable here. 
Only Local Rank Correlations (LRCs) can be formed Within Clusters. 

 
# NOTE: Here, we save the Environment object output by NUsetup() to a single character 
# name, e . Of course, users could use a much longer name ...perhaps, one descriptive of which of 
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# the available x-Covariates were included or excluded from the "xvar" vector used in 
NUcluster(). 
 

#        outcome:  lcanmort ...lung cancer mortality rate (continuous) for the US County 
#        treat:        lnradon  ...continuous Exposure (natural log, Winsorized to exceed -3.0) 
 

LC Strategy Phase One: Aggregation 
 
#  Compute and Save LRC distributions for a few values of K = Number of Clusters... 
mort010 <- lrcagg( 10, e)   # Average Cluster Size:  ~288 US Counties 
mort050 <- lrcagg( 50, e)   # Average Cluster Size:   ~58 US Counties 
mort100 <- lrcagg(100, e)   # Average Cluster Size:   ~29 US Counties 
mort200 <- lrcagg(200, e)   # Average Cluster Size:   ~14 US Counties 
 
# Each of the above 4 lrcagg() output objects could now be printed and/or plotted... 
 

 
# Below, we focus on visualizing the observed LRC distribution from mort050 ... 
 
plot(mort050, e)   # the default (show="all") displays 3 basic visualizations: 
                   # histogram, box-plot and eCDF for the observed LRC 
                   # disribution... 

  
 
 
NOTES: 

- Experimental units (US counties) are treated here as being equally important (i.e. are assigned 
equal weights) in the overall LRC distribution within 50 clusters depicted above. 

- The importance of the ith estimated LRC is then proportional to the size of the ith cluster. 
- As K increases in consecutive lrcagg() invocations, the same overall "weight" (N = 2,881 

Counties) would usually be assigned to each LRC distribution. Clusters of 3 or more 
Counties are unlikely to become "uninformative" here for because lnradon has many 
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more than 2 levels. The maximum K allowed is Kmax = floor(N/12), which is 240 
for the radon data. 

- The reasonableness of this sort of "weighting" assumption may be somewhat lower here (where 
experimental units are US counties with varying total populations and geographical sizes) 
than in our LTD example of Section §5 ...where units are individual PCI pseudo-patients. 

 
# For situations where researchers may wish to assume (pretend) 
# that all x-confounders specified in NUcluster( ) are actually 
# Instrumental Variables (IVs), the NU.Learning-package 
# provides the ivadj() function... 
 
# Compute and Save statistics from the "IV distribution" for K = 50 Clusters... 
 
iv050  <- ivadj(mort050) 
 

  # NOTE: the input to ivadj() is an output object from either lrcagg() 
  # or ltdagg() that specifies the number of clusters, K = 50, and the envir  
  # output by NUsetup(). 
 

plot(iv050)  # graphical display ...with linear lm() and smoothing.spline() fits. 

 
 

NOTE: The Relative Exposure levels shown above as cluster abcissas are "like" Propensity 
Scores only in the sense that they do fall within the closed interval [0, 1].  An initial "PS-like" 
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variable computed by lrcagg() consists of cluster centroids (local means) of Winsorized 
log(radon) exposure; so the min(score) starts out being negative while max(score) exceeds +1. 
Thus ivadj() first translates abcissas from lrcagg() by subtracting off the minimum score, 
then rescales them by the observed range of scores. In particular, NOTE the distinct downward 
trend in Observed LAOs as the "propensity" for high radon exposure increases ...which agrees with 
the above distribution of mostly Negative LRCs.   
                                                                                                                                                           

# LC Strategy Phases One: Aggregate 
#      and / or Three: Explore 
#  View "Sensitivity Analysis" Summary Plot... 
 

LCcompare(e)  

 
A wise choice for K takes advantage of Variance-Bias tradeoffs.  
 

• Large values of K tend to produce smaller clusters with potentially Less 
Bias due to making "better" within-cluster x-Space Matches. Here, LRC 
medians are essentially the same for K = 100 & 200 as for K = 50, so 
taking K > 50 does not appear to further reduce Bias. 
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• On the other hand, using "too-many" clusters that then tend to be "too-
small" yields LRC estimates that are highly variable and can possibly be
misleading.

• Above results for K=100 and 200 strike me as mostly Inflating the
Variability of the Observed LRC distribution ...relative to K=50 Clusters.

Thus, K = 50 clusters (of average Size ≈ 58 counties) strike me as delivering an 
optimal Variance-Bias Trade-Off in the above plot. 

Thus, we will use K=50 below to illustrate LC Confirm analyses... 

 
NU Strategy Phase Two: Confirm 
 
#     Does the Observed LRC Distribution for 50 clusters differ in 
#     clear and important ways from its NULL "Random 
#     Permutation" Distribution.  This NULL distribution hypothesizes 
#     that the baseline x-confounders used in clustering experimental 
#     units (US Counties) are actually IGNORABLE !!! 

system.time( conf050 <- confirm(mort050) )    # Simulation takes ~4.8 seconds. 

conf050 

confirm Object: Compare Observed and NULL Distributions of Local Effect-Sizes... 
   Simulated NULL Distribution uses Random Clusterings of Experimental Units. 

Data Frame: radon  
Outcome Variable: lcanmort  
Treatment Factor: lnradon  
Number of Replications: 100  
Number of Clusters per Replication: 50  
Number of Random NULL Local Effect-Sizes: 288100  

    Mean Observed Local Effect-Size = -0.3216341 
    Std. Dev. of Observed Effect-Sizes = 0.1798312 
    Mean Random NULL Effect-Size = -0.4412605 
    Std. Dev. of Random Effect-Sizes = 0.1090509  

Nonstandard Kolmogorov-Smirnov comparison of Discrete Distributions: 
Observed two-sample KS D-statistic = 0.4587956  



NU Learning in R Page 19 

plot(conf050) 

NOTES: 
- The NULL random permutation LRC distribution (assuming x-confounders are

ignorable) depicted above looks very smooth and much like a symmetric and 
continuous (approximately normal) distribution. In reality, it contains MANY very 
small STEPS. 

- In sharp contrast, the corresponding, overlayed Observed LRC distribution (total weight
= 2,881 counties) looks quite different from the NULL over the rank-correlation 
range from about −0.40 to about +0.05. 

- In other words, these two LRC distributions appear to be clearly different!

The confirm() and KSperm() functions within the LocalControlStrategy-package
use the  stats::ks.test() function only to compute the two-sample Kolmogorov-Smirnov
"D-statistic" and neither report nor save the p-value computed by ks.test(). After all, the
"standard" K-S testing situation is where both underlying distributions being compared are 
continuous. TIED values between eCDF ordinates then occur with probability 0. Sample LTD and 
LRC distributions consist of estimates that are constant within-clusters, so TIES always occur 
within every informative cluster, making the p-value from ks.test() inappropriate (severely
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biased downwards.) The confirm()and KSperm()functions also call suppressWarnings( 
ks.test( )) because within-cluster TIES are expected to occur in LC analyses! 
 
KSperm() does use the highly intuitive K-S "D-statistic" to compare LTD and LRC distributions 
with jumps in their CDFs. These jumps tend to occur at "random" numerical values, yet jumps at 
LTD = 0 are predictable whenever the y-Outcome variable is binary. For example, see the eCDF 
plots on pages 26 and 29. 
 
The primary objective of KSperm(confirm())is to simulate an appropriate p-value, 
"adjusted" for TIES, when testing the NULL hypothesis that the x-Covariate variables used in 
clustering are actually IGNORABLE. This testing is based upon random permutation theory 
(resampling without replacement). 
 

# Use KSperm() to simulate a p-value for the 
# observed K-S D-statistic from confirm()... 
  
system.time( ksd050 <- KSperm(conf050) )    # Simulation takes ~13.5 seconds. 
                                            # Default number of reps = 100. 
ksd050 # Implicit PRINT 
 
KSperm: Simulated NULL Distribution of Kolmogorov-Smirnov D-statistics 
    when the given X-covariates are assumed to be IGNORABLE. 
 
Data Frame: radon  
Outcome Variable: lcanmort  
Treatment Variable: lnradon  
Effect-Size estimates: Local Rank Correlations (LRCs) 
Number of Random NULL D-statistics: reps = 100  
Number of Clusters per replication: 50  
 
    Observed Kolmogorov-Smirnov D-statistic = 0.4587956 
    Simulated NULL KS-D order statistics = 
 
  [1] 0.05847969 0.06034710 0.06224575 0.06267615 0.06433183 0.06860465 
  [7] 0.06885456 0.06940646 0.07051371 0.07095453 0.07186741 0.07255467 
 [13] 0.07382506 0.07493232 0.07531413 0.07570288 0.07639014 0.07664700 
 [19] 0.07676501 0.07804235 0.07871572 0.07940646 0.07946199 0.07980562 
 [25] 0.08063520 0.08093370 0.08238112 0.08324887 0.08357515 0.08385630 
... 
 [73] 0.11029504 0.11049288 0.11166609 0.11298160 0.11818466 0.11995488 
 [79] 0.12047206 0.12115585 0.12282541 0.12336342 0.12431100 0.12623395 
 [85] 0.12652204 0.12677890 0.12761888 0.12802152 0.12872614 0.13212773 
 [91] 0.13238459 0.13334606 0.13491496 0.14192294 0.14534537 0.14591114 
 [97] 0.14868796 0.15201666 0.16031586 0.17372093 
 
    Simulated adjusted p-value for the Observed D-statistic: 0.01 

 
NOTES: 

- In each of the (default) 100 replications requested above, 50 new NULL LRC estimates result 
from 50 new clusters formed by purely random permutations of the 2,881 cluster ID 
labels on the 50 original, observed clusters of well-matched units. 
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- Many more full replications (than reps = 100) could of course be requested. However, the 
execution time of KSperm() would then increase linearly with the value of reps. 

- For example, setting reps = 500 would require more than 1 minute of computation.  If 
the maximum simulated NULL LRC order statistic were still less than the observed 
D = 0.4588, then the simulated p-value would be reported as 1/500 = 0.002. 

 
plot(ksd050) 

 
 
 
 

The above eCDF plot for the simulated NULL distribution of "K-S D-
statistic" order statistics (listed on page 20) makes it visually clear 
that the observed D-statistic of 0.4588 is more the than twice as large 
as the maximum simulated NULL value of 0.1737. In other words, the 
true p-value (fully "adjusted" for TIES) associated with the 
observed D-statistic of 0.4588 is clearly MUCH less than the 
simulated estimate of 0.01 resulting from KSperm() with reps=100. 
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LC Strategy Phase Four: REVEAL 

 
# How "predictable" is an observed LRC or LTD effect- 
# size Distribution from the baseline x-Characteristics 
# of experimental units? Such predictions may use any 
# available x-vars. Those specified in LC Phases 1, 2 
# and 3 should be considered here, but xvars previously 
# excluded may now be reconsidered here in Phase Four. 
 
# The function provided by the LocalControlStrategy-package aimed specifically at 
helping researchers reach their ultimate "stretch-goal" of predicting local effect-size 
estimates is reveal.data(). This function outputs a data.frame resulting from 
appropriate sorting and appending of LTD or LRC treatment effect-size estimates from 
ltdagg() or lrcagg() -- as well as a Cluster membership-number variable -- to a copy of 
the original data.frame input to LCsetup(). 
 
Specifically, the data.frame output by reveal.data( ) is suitable for input to 
party::ctree() and to the randomForest::randomForest() & pdp() functions.  
 
a number of other "less Visual" prediction methods available in R. 
 
radonLRC <- reveal.data(mort050, clus.var="C50", effe.var="LRC50") 
 
Without giving any details, we simply display below some tree-models for predicting the 
LRC50 variable within the radonLRC data.frame. Here, we use the R party-package for 
creating conditional trees based upon permutation theory. 
 

 
Each ctree() below makes binary splits at 3 levels, yielding a total of at most 23 = 8 "leaf" 
nodes at level 4. 
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The first four-level tree (above) comes from the "ward.D" clustering illustrated above, pages 14 - 22. 
 

 
This second tree from 50 "diana" clusters predicts over a somewhat wider rank-correlation range. 
 

 
This third tree from "ward.D2" clustering shows a rank-correlation of +0.4 within Node 8.  In fact, 

Nodes 7 & 8 come from a 3-way split of Node 2 on cursmoke { <= 28.6, (28.6,33.2] and > 33.2 }. 
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5.   LTD Example: Simulated Observational data on 
Augmentation of Percutaneous Coronary 
Interventions (PCIs) with a new Blood 
Thinning Agent 

 
Here we use data from a plasmode simulation (Gadbury et al. 2008) based upon the observational 
study of Kereiakes(2000). Specifically, we illustrate calculation of Local Treatment Differences 
(LTDs) using R functions in version 1.3 of the LocalControlStrategy-package.  In the 
original 1997 study, 996 patients received an initial PCI at Ohio Heart Health, Christ Hospital, 
Cincinnati and were followed for at least 6 months by the staff of the Lindner Center. The 
data.frame used here contains baseline characteristics and simulated outcomes for 15,487 pseudo-
patients. 
 
The pci15k data.frame contains 11 numeric variables. There are no NA's. 
 

patid 
 

surv6mo 
 

Patient ID Number. Integer value of 1 through 15,487. 
 
Survival for at least 6 months following PCI. 1 => Yes; 0 => No. 

cardcost Cardiac related costs incurred within 6 months of patient's initial PCI; 1998 
dollars. Reported costs were truncated by death for 404 patients with surv6mo 
== 0. 

thin Binary treatment selection indicator. A value of thin=0 implies that usual PCI 
care alone was received; thin=1 implies that the usual PCI care received was 
augmented by either planned or rescue treatment with the new blood thinning 
agent. 

stent Coronary stent deployment: 1 => Yes ; 0 => No. 
height Patient height in centimeters: Integer between 108 and 196, inclusive. 
female Female gender: 1 => Yes ; 0 => No. 
diabetic Diabetes mellitus diagnosis: 1 => Yes ; 0 => No. 
acutemi Acute myocardial infarction within the previous 7 days: 1=>Yes; 0=>No. 
ejfract Left ejection fraction. Numeric value from 17% to 77%. 
ves1proc Number of vessels involved in the patient's initial PCI procedure. Integer value 

of 0 through 5. 
 

# Load the LocalControlStrategy-package Library into the current R session... 
 
library(LocalControlStrategy) 
 
 

# Input Simulated, Observational Data: 
 
data(pci15k) 
 
 

# Decide "how many" and "which" baseline x-space characteristics of patients will actually 
# be used to form Clusters = BLOCKS of relatively "well-matched" patients. Here we use 
# all 7 available x-confounders because they could all be roughly equally important. 
 
xvars <- c("stent", "height", "female", "diabetic", "acutemi", 
           "ejfract", "ves1proc") 
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# Compute the Dendrogram (Tree) for unsupervised, nonparametric LC analyses using one 
of 8 possible Clustering algorithms... 
 
system.time( hclobj <- LCcluster(pci15k, xvars) ) # Takes ~8 seconds. 
hclobj   

LCcluster object: Hierarchical Clustering for LC 
Data Frame input: pci15k 
Clustering algorithm used: ward.D 
Covariate X variables:[1] stent   height   female 
               diabetic acutemi ejfract ves1proc 

 
plot(hclobj) 

 
 
 
LCe <- LCsetup(hclobj, pci15k, thin, surv6mo) 
 

The Treatment variable has 2 levels. 
Local Rank Correlation (LRC) analyses are not applicable here. 
Only Local Treatment Differences (LTDs) can be formed Within Clusters. 

 
 
# AGAIN: Saving the Environment object output by LCsetup() is ESSENTIAL.  Here, we  
# illustrate using the name LCe. 
 
#        Outcome:     surv6mo is also binary; 1 => Yes, 0 => No.) 
#        Treatment:  thin     ...0 => usual PCI care alone, 1 => PCI augmented with planned or 
#                                                rescue use of a new blood thinning agent.                                                                                                  

 
To examine the "structure" of the LCsetup() output object, use:  ls.str(LCe) 
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LC Strategy Phase One: Aggregation 
 
#  Compute and Save LRC distributions for a few values of K = Number of Clusters... 
surv0050 <- ltdagg(  50, LCe)      # average cluster size ~310 patients   
surv0100 <- ltdagg( 100, LCe)      # average cluster size ~155 patients   
surv0200 <- ltdagg( 200, LCe) 
surv0500 <- ltdagg( 500, LCe)      # average cluster size  ~31 patients  
surv0750 <- ltdagg( 750, LCe) 
surv1000 <- ltdagg(1000, LCe)      # average cluster size  ~16 patients   
 
# Each of the above 6 ltdagg() output objects could now be printed and/or plotted... 
 
# Below, we focus on visualizing the observed LRC distribution from surv0500 because this 
choice appears to optimize variance-bias trade-offs (...see the LCcompare() plot on page 28.) 
 
plot(surv0500)   # the default (show="all") displays 3 basic visualizations: 

  
 
# Use of a Binary y-Outcome (surv6mo) creates many LTD = 0 estimates 
# from clusters where all patients survived > 6 months! 
 

# Uninformative clusters contain only thin=1 or only thin=0 patients. 
 

# Observed LTD distribution has a more heavy upper tail of positive 
# estimates ...i.e. thin=1 patients are more likely to survive! 
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# Instrumental Variable (IV), inferences from the pci15k for K = 500 Clusters... 
 
iv0500  <- ivadj(surv0500)  # the ivadj() input here is output from ltdagg(). 
 
     ...i.e. surv0500 <- ltdagg( 500, LCe) as shown near the top of page 26.  

 
 

plot(iv050)  # IV graphical display  ...here, the linear [ lm() ] and smoothing.spline() fits 
                                                                     both slightly favor thin=0 over thin=1. 
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# LC Phases... One: Aggregate & Three: Explore. 
# View the "Sensitivity Analysis" Summary to Pick K... 
 
LCcompare(LCe)  

 

 
A wise choice for K again takes advantage of Variance-Bias tradeoffs. 
 
See our discussion of this crucial Trade-Off on page 17. 
 
K = 500 clusters (of average Size = ~31 patients each) is about the 
upper limit for K in my reading of the above plot. The median LTD 
drops to essentially Zero for K ≥ 500.  
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LC Strategy Phase Two: Confirm 
 

#     Does the Observed LRC Distribution for 500 clusters differ in clear and important ways 
#     from its NULL Random Permutation Distribution?  When this NULL case holds, the  
#     specified baseline x-Confounders are literally be IGNORABLE! 
 
conf5H <- confirm(surv0500) 
 
conf5H 
confirm Object: Compare Observed and NULL Distributions of Local Effect-Sizes... 
   Simulated NULL Distribution uses Random Clusterings of Experimental Units. 
 
Data Frame: pci15k  
Outcome Variable: surv6mo  
Treatment Factor: thin  
Number of Replications: 100  
Number of Clusters per Replication: 500  
Number of Random NULL Local Effect-Sizes: 1548700  
 
    Mean Observed Local Effect-Size = 0.0415991 
    Std. Dev. of Observed Effect-Sizes = 0.112318 
    Mean Random NULL Effect-Size = 0.02525509 
    Std. Dev. of Random Effect-Sizes = 0.05595036  
 
Nonstandard Kolmogorov-Smirnov comparison of Discrete Distributions: 
Observed two-sample KS D-statistic = 0.06997671 

 
plot(conf5H) 

 



NU Learning in R Page 30 
 

NOTES: 
 

- While the Observed LTD and random NULL LTD eCDF distributions do look somewhat 
similar here, closer examination reveals an important difference. Specifically, the 
Observed LTD distribution has a thicker right-hand tail (LTD > 0.1) than the random 
NULL LTD distribution. 

 
- About 30% of the random NULL distribution consists of LTD = 0 estimates, while the 

Observed LTD distribution contains even MORE Zero LTDs (~ 40%.)  This high 
likelihood of LTD = 0 values is an artifact that occurs simply because the surv6mo 
variable is BINARY. 

 
- Again, warnings() from stats::ks.test() about within-cluster TIES are 

suppressed by the confirm() and KSperm() functions within the 
LocalControlStrategy-package. 

 
- Below, we illustrate use of the KSperm() function to "simulate" a highly relevant 

adjusted p-value for the observed KS D-statistic = 0.06998 from confirm() for 
the pci15k data.frame ...one that is appropriately "adjusted" for TIES. This 
KSperm()simulation will assure us that the Observed LTD effect-size distribution 
contains truly Heterogeneous Treatment Effects ...predictable from the observed 
baseline x-Characteristics of 15,487 patients! 

 
# Use KSperm() to simulate a p-value for the 
# Kolmogorov-Smirnov D-statistic ...adjusted for TIES.  
   
ksd5H <- KSperm(conf5H) 
 
ksd5H # Implicit PRINT 
 
  KSperm: Simulated NULL Distribution of Kolmogorov-Smirnov D-statistics 
    when the given X-covariates are assumed to be IGNORABLE. 
   
  Data Frame: pci15k  
  Outcome Variable: surv6mo  
  Treatment Variable: thin  
  Effect-Size estimates: Local Treatment Differences (LTDs) 
  Number of Clusters per Replication: 500  
  Number of Replications: 100  
   
      Observed Kolmogorov-Smirnov D-statistic = 0.06997671 
      Sorted NULL D-statistic values = 
   
  [1] 0.01566745 0.01793774 0.01816263 0.01836000 0.01908880 0.01919791 
  [7] 0.01976417 0.01996444 0.02064527 0.02109115 0.02118090 0.02129501 
 [13] 0.02175825 0.02183345 0.02184453 0.02203069 0.02205039 0.02231997 
 [19] 0.02261900 0.02264890 0.02269040 0.02310424 0.02321109 0.02328852 
 [25] 0.02352646 0.02371235 0.02411189 0.02422643 0.02425668 0.02429278 
 [31] 0.02444308 0.02450218 0.02451578 0.02479690 0.02515066 0.02529539 
 [37] 0.02534829 0.02536420 0.02547831 0.02579231 0.02589359 0.02634783 
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 [43] 0.02671969 0.02675350 0.02676857 0.02692155 0.02702383 0.02708499 
 [49] 0.02729595 0.02738219 0.02749458 0.02756483 0.02770104 0.02770478 
 [55] 0.02773865 0.02809596 0.02989248 0.02993065 0.02997812 0.03000664 
 [61] 0.03006318 0.03043910 0.03057709 0.03061519 0.03101658 0.03101812 
 [67] 0.03134739 0.03141035 0.03161021 0.03173051 0.03186272 0.03201433 
 [73] 0.03203064 0.03226561 0.03253896 0.03358066 0.03360755 0.03407578 
 [79] 0.03457569 0.03462626 0.03464702 0.03470048 0.03496531 0.03508682 
 [85] 0.03533746 0.03593027 0.03657187 0.03714953 0.03774204 0.03778838 
 [91] 0.03823750 0.03827738 0.03876721 0.03968821 0.03984248 0.04040203 
 [97] 0.04161974 0.04282486 0.04295250 0.04840315 <= Simulated Max of 100 
                                                     NULL order statistics 
       The simulated p.value = 0.01 
 
 
In other words, the pci15k example provides significant evidence against the NULL hypothesis 
that all 7 potential x-confounding patient characteristics are IGNORABLE. [See plot below.]  
Together, the 7 baseline characteristics of 15,487 pseudo-patients in the pci15k are likely to be 
of genuine use in models that use "blocking" and/or "covariate adjustment" to compare thin=1 
patients with usual-care-alone(thin=0)patients.  
 

plot(ksd5H) 
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LC Strategy Phase Four: REVEAL 
 

# How "predictable" is the LTD effect-size Distribution from 
# the baseline x-Characteristics of 15,487 pseudo-patients? 
 
We start addressing this question by first observing that the "new" blood thinning agent, 
thin=1, has a traditional "highly significant" main-effect within the pci15k data. 
 

t.test(surv6mo ~ thin, data = pci15k) 
 
        Welch Two Sample t-test 
 
data:  surv6mo by thin 
t = -10.318, df = 13967, p-value < 2.2e-16 
mean in group 0    mean in group 1 ...Global ATE= +0.0252513. 
      0.9624823          0.9877336    [ 2.5% higher surv6mo ] 

 
pciLTD5H <- reveal.data(surv0500, "C5H", "LTD5H") 
 
# Display a Tree Model for Predicting the LTDs for 500 "ward.D" clusters... 
require(party) 
set.seed(13254) 
 
fit3 <- ctree(LTD5H ~ stent+height+female+diabetic+acutemi+ejfract+ves1proc, 
 data = na.omit(pciLTD5H), controls = ctree_control(maxdepth = 3)) 
 
plot(fit3, main="Party Conditional Tree for LTDs") 
 

 
NOTES: 
 

- The "statistically significant" overall 6-month survival advantage (2.5%) for PCI patients treated with 
the new blood thinning agent may not justify a "one-size-fits-all" endorsement. Specifically, tree node #12 
is gigantic. This 67% of all PCI patients studied (with no recent acutemi and ejfract > 47) appear to 
do roughly equally well with or without the new blood thinner. 

 
- Diabetic patients with ejfract ≤ 42 do either "better" with the new blood thinner (527 in node #7) or 
even "quite well" (221 in node #8) when more than 1 vessel was involved in their initial PCI procedure. 

 
- The initial and/or long-term monetary costs associated with using the new blood thinning agent may well 
be an important factor in deciding whether or not to use it on certain patients. Unfortunately, the 
cardcost variable in the pci15k data excludes the (potentially steep) acquisition cost of that new 
agent! 



NU Learning in R Page 33 
 

6.  Summary - and -  Choice of Clustering Method 
 
This LCstrategy_in_R.pdf file has introduced and illustrated all four phases of Local 
Control Strategy for analysis of observational data. We have reviewed some simple basics of 
Propensity Scoring theory and shown how they relate to patient Clustering / Blocking methods in 
Section §3. Additional details on all 9 basic LC Strategy functions, their arguments and 
(default) settings, and their print() and plot() methods are all included within the official  
LocalControlStrategy-manual.pdf  file. 
 
An interesting feature of our two LC case-studies, on use of LRCs with the radon data and use of 
LTDs in the pci15k example, is that both studies lead to similar conclusions about effect-size 
Heterogeneity:   local effect-sizes are indeed predictable from the baseline-characteristics of 
individual experimental units. 
 

The extra zinger in our radon example was, of course, that mortality generally decreases 
as radon (ionizing radiation) exposure increases ...as long as radiation remains at rather low 
levels; this phenomenon is known as radiation hormesis1. 
 

Also, both examples of LC Strategy given here focused on the default method ("ward.D") of 
hierarchical clustering. Other possibilities useful in sensitivity analyses include one divisive 
method ("diana") and six agglomerative methods ("ward.D2" , "complete" ,  
"average" , "mcquitty" , "median" or "centroid".) The single-linkage method 
available from stats::hclust ("single") is NOT recommended for use in LC analyses. 
 
My experience is that "ward.D" clustering tends to offer a rather unique advantage: this 
particular algorithm appears to produce numerous clusters of nearly equal size ...while minimizing 
creation of clusters that are either really small or unusually large, unlike the "ward.D2" method. 
 
For example, compare the two plots shown near the top of page 34. Since the R-code for 
producing such plots is NOT provided by the LocalControlStrategy-package, we now 
discuss how R-users can add such functionality to almost any R-package. 
 
R users familiar with the str() command can easily add new functionality not currently 
implemented within the LocalControlStrategy-package. For example, by examining the 
output from str(mort050)for the mort050 object discussed here on pages 15 through 23, a user 
wishing to visualize variation in cluster sizes for the radon example could write a few lines of 
code that ends by invoking the  graphics::dotchart() and grid() functions as follows: 
 
co <- order(mort050$LRCtabl$w)  # w = cluster size (frequency weight) 
s50 <- mort050$LRCtabl[co,] 
 

 
1 Radiation hormesis is the hypothesis that low doses of ionizing radiation are beneficial, stimulating the 
activation of repair mechanisms that protect against disease, that are not activated in absence of ionizing 
radiation. Wikipedia 

https://en.wikipedia.org/wiki/Radiation_hormesis


NU Learning in R Page 34 
 

 
 
dotchart(s50$w, 
  main = "ward.D Hierarchical Clustering", 
  xlab = "Sizes of 50 Clusters") 
grid() 

 
hclobj <- LCcluster(radon, xvars, 
  method = "ward.D2") 
# etc. 
# etc. 

  
Note that "ward.D" clustering produced NO clusters containing fewer than 20 US Counties and 
only 2 clusters containing more than 100 US Counties. But "ward.D2" clustering produced 8 
clusters containing fewer than 20 US Counties and 6 clusters containing more than 100! 
 
We end this summary with the following Final Cautionary Note: 
 

Instrumental Variable (IV) methods make assumptions that, unfortunately, are both 
STRONG and UNVERIFIABLE.  In particular, note the inferential "similarity" between a 
pair of radon scatter-plots: [1] the "unadjusted" plot on page 12 and [2] the IV plot on 
page16.  Both suggest that lung cancer mortality generally decreases as radon exposure 
increases!  Although a "preliminary" raw-data plot like that of page 12 for 2,881 individual 
US counties may be well-known to be potentially misleading, the same probably cannot be 
said about IV plots! In fact, the IV plot of page 16 for 50 clusters has indeed been 
"adjusted" via traditional BLOCKING ...but has NOT been "adjusted" for x-confounders 
except via ASSUMPTION! Some researchers apparently think that IV methods are rather 
"sophisticated" or "high in the pecking-order" of potential statistical inferences. However, 
because assumptions can turn out to be dead WRONG, I think that both types of plots (and 
the inferences drawn from them) should generally be considered to provide, at best, only 
preliminary insights. 
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7.  “Most-Like-Me” Visualizations for Doctor-Patient or 
Analyst-Administrator Communications 

 
First Function for Most-Like-Me Computations: 
       
  "mlme" <- function (envir, hcl, LCagg, xvec ) 
 
 

Second Function for Graphical mlme Displays: 
 
  plot(mlmeObj, NN=50, breaks=50) 
     ...where NN is an integer (or combination of integers) giving 
          the number(s) of “Nearest Neighbor” eUnits requested. 
 
Third Function for Summary Statistic listings: 
 
  mlme.stats(mlmeObj, NN=50) 
 
 
mlme “variables” defined in X-Confounder Space: 
 

xvars = Vector of X-Confounder (pre-exposure) characteristics 
        used to Cluster eUnits (experimental units, patients). 
varx =  Calculated Vector of Variances of Xvars across all 
        “N” given observations.  
xvec =  Numerical values of the “Xvars” Variables used to 
        define which Patient is “Me”. 
D2[i] = Sum of Squared, Scaled Differences for Patient[i] 
      = SUM[j] { (Xvars[i][j] - Xvec[j])^2 / Varx[j] } 
OD[i] = Order of D2[i] values after SORTING. 

NOTE that OD[1] should be 0.0 whenever the specified 
Xvec corresponds to that of Any Patient within the 
current dataset. 

For subsequent PLOTTING, ALL Rows of the Dataset[i][j] 
          are SORTED in converting D2[i] values into 
          strictly non-decreasing OD[i] order.    

 

7.1 First Set of Examples: “Most-Like-Me” Plots and Listings... 
 
The “pci15K” case-study uses Seven “xvar” Confounders: 
     stent height female diabetic acutemi ejfract ves1proc 
 
The "pci15K" data.frame contains 15487 Patients (eUnits).  
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eUnit “11870” has xvec = c( 0, 162, 1, 1, 0, 57, 1 ), which 
means: stent=No, height=162cm, female=Yes, diabetic=Yes, 
       acutemi=No, ejfract=57%, ves1proc=1 (vessel). 
 

PCI Survival At Least Six Months (1=Yes,0=No): 
 
Most-Like-Me plots of LTD Distributions for treatment 
with new Blood Thinning agent... 

 
 
NOTE: Since the modal bins contain only exact zero 
differences in 6 month-survival rates, the 250 patients 
most-like the TARGET patient (# 11870) generally 
experienced the Same or Better 6-month Survival rates 
with the new blood thinner than without it.   
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Cardiovascular Costs associated with PCI 
procedures: 
Unlike the (ABOVE) Most-Like-Me plots of LTD 
Distributions (page 36), HERE (page 37) our focus is on 
Costs rather than Effectiveness (6-Month Survival Rates) 
for the new Blood Thinning agent... 
 
mlmeXvec <- mlme(envir = LCe, hcl = hclobj, 
              LCagg=cost0500, xvec=c(0,162,1,1,0,57,1)) 
plot(mlmeXvec, NN = 250) 
 

 
NOTE: The 250 patients most-like the TARGET patient generally 
experienced no particular savings or losses in Cardiovascular Costs when 
their PCI included the new blood thinner ...rather than withheld it. 
 
WARNING: Most-Like-Me “print-outs” from the pci15k data.frame are NOT 
displayed here because they can reveal potentially PRIVATE information 
about individual patients ...which is usually an ABSOLUTE No-No !!! 
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7.2 Second Set of Examples: “Most-Like-Me” Plots and Listings... 
 

Example analyses of the “radon” data.frame use only 
Three “xvar” Confounders: 
                      obesity   over65   cursmoke 
 
The "radon" data.frame contains 2881 US Counties (eUnits).  

 
Residents of Teller County, Colorado ( fips = 8119): 
   "fips" codes are unique identifiers of US Counties... 
 
subset(radon, fips == 8119) 
# fips  state  county         lcanmort radon  lnradon  
# 8119  CO     Teller_County  54.9543  99.7   4.602166 
#             obesity over65 cursmoke evrsmoke hhincome 
#             17.2    7.5    24.4     50.75    66.19 
# Thus: 
 
    xvecTC <- c(17.2, 7.5, 24.4) 
   
   and... 
   
    mlmeTC <- mlme(e, hclobj, mort050, xvecTC ) 
 
   for 
 
# R-code for plot(), mlme.stats() and print(): 
 
    plot(mlmeTC, NN = 250)        # Top of page 39... 
 
    mlme.stats(mlmeTC, NN = 250) # Pages 39 and 40... 
 
    mlmeTC     # Implicit print(), Rest of page 40... 
 
# Unfortunately, only 48 of 64 Counties in Colorado are included in the 
“radon” data.frame. While Teller County is relatively small in area and 
population, it was probably included in EPA data requests because it has 
the highest (99.7 pCi/L) average radon exposure of all 2881 counties 
studied. Also, Teller plus El Paso County comprise the “Colorado 
Springs” MSA and both are adjacent to the (giant) Denver-Aurora-Lakewood 
C-MSA that contains 10 Colorado counties.   
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# NOTE that the LRCs for Teller’s NNs tend to be a little “less” 
# Negative than those of “All 2881” US Counties... 
 

mlme.stats(mlmeTC, NN = 250) 
 
# Stats for 250 counties << Most-Like Me >> (Teller County)... 
# 
# Reference X-Vector (fips = 8119): 
#   obesity  over65  cursmoke 
#      17.2     7.5      24.4 
# X-data Variances for all 2881 eUnits: 
#   obesity   over65 cursmoke 
#  13.89507 16.25512 23.12973 
# Effect-Size Type: LRC  
# 
# Overall LRC Summary Statistics... 
#     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
# -0.68656 -0.42729 -0.31766 -0.32163 -0.23058  0.06641  
# LRC Standard Deviation = 0.1798312  
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# Most-Like-Me Sub-Group 1 contains 250 eUnits. 
#     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
# -0.47069 -0.33550 -0.27021 -0.24843 -0.24195  0.06641  
# LRC Standard Deviation = 0.1313957 
 
mlmeTC   # Implicit print()... 
 
# mlme Object: Most-Like Me Comparisons... 
#  
# xvec - My TARGET X-Vector: 
#   obesity over65 cursmoke 
# 1    17.2    7.5     24.4 
# X-data Variances for all 2881 eUnits: 
#    obesity   over65 cursmoke 
# 1 13.89507 16.25512 23.12973 
# Effect-Size Type: LRC  
#  
# LRC Summary Statistics... 
#     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
# -0.68656 -0.42729 -0.31766 -0.32163 -0.23058  0.06641  
# LRC Standard Deviation = 0.1798312  
#  
# First 10 Nearest Neighbors ... 
# OD        D2     effSiz  fips state            county lcanmort radon 
#  1 0.0000000 -0.2419496  8119    CO     Teller_County  54.9543  99.7 
#  2 0.5911405 -0.2419496 30031    MT   Gallatin_County  46.3380   6.1 
#  3 0.6642324 -0.2419496  8059    CO  Jefferson_County  56.0393   5.1 
#  4 0.6952737 -0.2419496  8069    CO    Larimer_County  51.6940   5.5 
#  5 0.6979736 -0.2419496  8093    CO       Park_County  42.5371   5.2 
#  6 0.7012677 -0.2706175  8041    CO    El_Paso_County  60.5550   4.7 
#  7 0.7690961 -0.2706175 30063    MT   Missoula_County  72.9909   6.6 
#  8 0.8063020 -0.2706175  8081    CO     Moffat_County  65.9440   2.8 
#  9 0.8951055 -0.2419496  8031    CO     Denver_County  61.6324   4.3 
# 10 1.0936231 -0.2419496  8103    CO Rio_Blanco_County  53.4387   1.8 
# 
#  lnradon obesity over65 cursmoke evrsmoke hhincome 
# 4.602166    17.2    7.5     24.4    50.75    66.19 
# 1.808289    17.2    8.5     20.9    47.85    57.36 
# 1.629241    17.4    9.7     21.5    47.40    71.21 
# 1.704748    16.9    9.5     21.2    47.65    64.94 
# 1.648659    16.0    7.3     20.7    48.95    63.32 
# 1.547563    19.2    8.6     21.6    48.60    60.05 
# 1.887070    19.5   10.0     24.1    49.60    45.00 
# 1.029619    20.1    9.3     24.6    50.60    59.17 
# 1.458615    17.0   11.3     24.7    45.00    57.89 
# 0.587787    16.1   11.1     22.2    52.35    61.43 
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9. Syntax: LocalControlStrategy-package R functions: 
 
The LocalControlStrategy-manual.pdf file provides much more complete information 

about calling sequences and parameter settings than the short summary given below. 
 
hclobj <- LCcluster(dframe, xvars, method = "ward.D") ...where 
     xvars <- c("x1", "x2", ..., "xN"). 

plot.LCcluster(x, ...) 
print.LCcluster(x, ...) 

 
LCe <- LCsetup(hclobj, dframe, trex, yvar) 
 
ltdobj <- ltdagg(K, LCe)  

plot.ltdagg(x, LCe, show = "all", breaks="Sturges", ...)  
print.ltdagg(x, ...)  

 
lrcobj <- lrcagg(K, LCe)  

plot.lrcagg(x, LCe, show = "all", breaks="Sturges", ...)  
print.lrcagg(x, ...)  

 
ivobj <- ivadj(x) ...for x a ltdagg() or lrcagg() output object. 

plot.ivadj(x, ...)  

print.ivadj(x, ...)  

 
confobj <- confirm(x, reps=100, seed=12345) ...where x is a 

ltdagg() or lrcagg() output object. 
plot.confirm(x, ...)  
print.confirm(x, ...)  

 
KSpobj <- KSperm(x, reps=100) ...where x is a confirm() output 
                                 object. 

plot.KSperm(x, ...)  
print.KSperm(x, ...) 

 
LCcompare( LCe )  
 
outdf <- reveal.data(x, clus.var="Clus", effe.var="eSiz") 
            ...where x is a ltdagg() or lrcagg() output object. 
 
mlme(envir, hcl, LCagg, xvec) & mlme.stats(x, NN)... 
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