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1 Introduction

Ridge regression is a graphically oriented methodology for analysis of ill-conditioned 

(multicollinear) regression models. Ridge methods tend to be computationally inten-

sive, especially when normal-theory maximum likelihood estimation techniques are 

incorporated to provide objective information about the most appropriate form and 

extent of shrinkage. This paper presents an overview of ridge concepts along with five 

Stata programs to monitor the effects of shrinkage.

Key Words and Phrases: classical, fixed coefficients; empirical Bayes; random coefficients; 2-

parameter ridge family; multicollinearity allowance axis; true risks; simulated losses.

1



1.1 Ill-Conditioning and Ridge Regression

Fitting of models to ill-conditioned data collected retrospectively poses serious ob-

stacles to multiple regression practitioners, particularly in such fields as economics

where interest can focus on the relative sizes of estimated coefficients. Consider the

classical multiple regression model

y = 1µ+Xβ + ² (1)

where y is a n× 1 vector of observations on the response variable, µ is the unknown

intercept, X is a n×p matrix containing coordinates for p ≥ 2 non-constant predictor

variables, β is a p × 1 vector of unknown coefficients, and ² is a n × 1 vector of

unobserved, normally-distributed disturbance terms

² ∼ N(0, σ2I) . (2)

If the predictor variables are “centered” by subtracting off their observed means and

the resulting X matrix of explanatory variables is of full column rank, then the

maximum likelihood estimate of β is the least-squares solution

bβ = (X 0X)−1X 0y . (3)

It is then straightforward to show that

bβ ∼ N(β, σ2(X 0X)−1) . (4)
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Problems arise when X is ill-conditioned. Numerical ill-conditioning occurs when

exact linear relationships exist between, say, the i−th and j−th explanatory variables.

That is,

xi = a+ bxj , (5)

where a and b are constants. In this case, X 0X is singular, and β̂ is not uniquely

determined.

More commonly, two or more X variables are highly correlated, and X 0X ap-

proaches singularity. In this situation, bβ is unique but is imprecisely estimated. In
other words, the relative magnitudes of the elements of bβ may be distorted (they may
even have “wrong” numerical signs) because the fitted coefficients are also highly

correlated. As a result of this “statistical” ill-conditioning, elements of β̂ or cer-

tain linear combinations may be insignificant primarily because their variances are

relatively large.

The topic of ill-conditioned regression models is one of the most thoroughly re-

searched problems in statistics, and ridge regression is one approach that has been

proposed to treat the symptoms of ill-conditioning. Ridge estimators shrink the esti-

mated coefficient vector, β̂, and thus provide biased estimates of β. But variance is

also reduced by shrinking, so ridge estimators can achieve lower Mean Squared Error

(MSE) risk than least-squares.

An intuitive way to treat ill-conditioning is to increase the diagonal elements of
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X 0X before attempting to invert this inner products matrix and form β̂ via equation

(3), Piegorsch and Casella(1989). Anyway, the original ridge estimator of Hoerl(1962)

was

β∗ = (X 0X + kI)−1X 0y (6)

where k is a small, positive constant.

Interest in ridge regression was sparked by Hoerl and Kennard(1970a,b) when they

suggested plotting the p elements of β∗ as a function of k in a graphical display called

the ridge trace. They observed that the relative magnitudes of the elements of β∗

tend to “stabilize” as k increases and over-optimistically conjectured that is “easy”

to pick an extent of shrinkage yielding lower MSE than least squares. For more than

twenty years now, a storm of criticisms, alternative proposals for choice of k, and ridge

simulation studies have appeared in statistical literature. If any sort of consensus has

emerged, it may well be that (a) ridge methods tend to shrink much too much to be

anywhere close to being minimax rules [i.e. you can end up either winning big by

reducing MSE or else loosing big by increasing MSE] and (b) the “generalized cross

validation” method of Golub, Heath and Wahba(1979) for picking an appropriate

extent of shrinkage is a consistent high-performer in simulation studies.

Classical, normal-theory maximum likelihood estimation in generalized ridge re-

gression has been a research interest of mine since 1973. In my first published ridge
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paper, Obenchain (1975), I derived general equations for “likelihood monitoring” that

generated little interest, apparently due to their complexity. However, Gibbons(1981)

did evaluate this “O-method” and found that it out-performed Golub, Heath and

Wahba(1979) “generalized cross validation” in her favorable-case MSE simulations.

In Obenchain(1981), I restricted interest to a specific 2-parameter family of gener-

alized ridge estimators, equation (12) below, and derived a closed form expression

for the extent of shrinkage along a given ridge path that is most likely to achieve

minimum MSE risk; see equations (15) and (16) below. This maximum likelihood ap-

proach to shrinkage is fairly conservative in the sense that it reduces the MSE risk by

only about 50% even when its δMSE = 0 [equation(13), below]; but this conservatism

also means that the maximum likelihood approach can increase MSE by at most 25%

in the least favorable cases, usually somewhere in the δMSE = 0.8 to δMSE = 0.9

range. Ridge methods that shrink more aggressively than maximum likelihood tend

to either do a little better or else much, much worse on MSE, depending upon whether

the application is either favorable or unfavorable to shrinkage, respectively.

Other ridge research efforts of mine, Obenchain(1978,1984), lead to greater un-

derstanding of a variety of multivariate risk (matrix valued MSE) characteristics of

shrinkage estimators, along with corresponding normal-theory maximum likelihood

estimates. Like ridge coefficients, these risk estimates can also be plotted in traces

to display the effects of shrinkage and to help ridge practitioners decide whether to
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start shrinking in the first place and, once they start shrinking, where to stop!

1.2 Principal Components and Generalized Ridge Regression

This subsection contains technical details of generalized ridge estimation that may

be skipped over on first reading. Here we show (i) how to decompose least squares

estimates into uncorrelated components and principal correlations, (ii) that regression

on principal components is a special case of generalized ridge regression, and (iii) how

ridge estimators shrink least-squares coefficients along the principal axes of the given

X coordinates.

Even in cases where X is numerically ill-conditioned, rank(X) = r < min(p, n−

1), the singular value decomposition of X can be written as X = HΛ1/2G0. In

this decomposition, H is a n × r semi-orthogonal matrix of standardized principal

coordinates, G is a p × r semi-orthogonal matrix of principal axis direction-cosines,

and Λ1/2 is a r × r diagonal matrix of ordered singular values, λ1/21 ≥ · · · ≥ λ1/2r > 0.

Although the least-squares solution is not uniquely determined when r < p, the

shortest least-squares coefficient vector is β̂ = GΛ−1/2H 0y ≡ Gc, where c is the r × 1

vector of uncorrelated components of β̂. Note that

c ∼ N(γ,σ2Λ−1) (7)

where γ ≡ G0β are the r unknown true components of β. The structure of these
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uncorrelated components, c = Λ−1/2H 0y, provides key insights into the nature of

statistical ill-conditioning:

ci = r
o
i ·
s
y0y
λi

(8)

where roi is the principal correlation between y and the i-th column of H, the familiar

R-squared statistic is R2 = ro21 + · · ·+ ro2r , and the t-statistic for testing γi = 0 is

ti =
ci

σ̂ · λ−1/2i

= roi ·
s
n− r − 1
(1−R2) . (9)

Thus the i-th principal correlation, roi , determines whether the i-th component is

statistically significant, and yet ci can be large numerically simply because its λi is

relatively small rather than because its roi is relatively large!

Linear generalized ridge estimates are of the form

β∗ = G∆c =
X
giδici , (10)

where ∆ is a r× r diagonal matrix of non-stochastic shrinkage factors, δ1, · · · , δr,and

gi is the i-th column of G. Each shrinkage factor lies in the closed interval from zero

to one, 0 ≤ δi ≤ 1, and the total extent of shrinkage is measured by

m = r − δ1 − · · ·− δr = rank(X)− trace(∆) . (11)

This m is called the multicollinearity allowance ridge parameter, introduced and
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discussed in Obenchain and Vinod (1974), Vinod (1976) and Obenchain (1981). Ridge

coincides with least squares at m = 0 [δ1= · · · = δr = 1], and all ridge coefficients

approach zero as m approaches its upper limit of m =p [ δ1 = · · · = δr = 0].

Regression on principal components is the special case of equation (10) in which

each δi is either 0 or 1. Standard methods for deciding which δi to set equal to zero

are: (a) the components with the smallest singular values, λ1/2i , or (b) the components

with the smallest absolute principal correlations, |roi |.

Our primary focus will be on the 2-parameter ridge family in which the shrinkage

factor applied to the i-th uncorrelated component of the least-squares solution is of

the general form

δi = λi/(λi + kλ
q
i ), (12)

where k is non-negative and q is a finite power that determines the shape (or curva-

ture) of the ridge path through p−dimensional space, Goldstein and Smith (1974).

The “ordinary” ridge estimators of equation (6) correspond to q = 0 in equation (12).

The 2-parameter family is quite versatile in the sense that most shrinkage paths

considered in ridge regression literature are either special cases or limiting cases of

this family. For example, q = 1 yields uniform shrinkage, δ1 = · · · = δp. In actual

ridge practice, ties among eigenvalues are rare (except in designed experiments.) The

common situation is λ1 > · · · > λr > 0 where r = rank(X) ≤ p, and the first r

shrinkage factors are then all unequal as long as m > 0, m < r and q 6= 1 in equation
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(12). Note that q > 1 would focus initial shrinkage upon major principal axes,

δ1 < · · · < δr, while q < 1 focuses initial shrinkage along minor axes, δ1 > · · · > δr.

These q < 1 (declining deltas) shrinkage patterns, when favored by the y data, have

much greater potential for reduction in MSE risk via variance-bias trade-offs than do

the q > 1 patterns.

The limit as q approaches +∞ is optimal for the Gibbons(1981) “unfavorable

case” where the true β vector lies along the eigenvector corresponding to the small-

est regressor eigenvalue, λp. And the limit as q approaches −∞ is essentially what

Marquardt(1970) called “assigned-rank” regression. In both of these limiting cases,

the shrinkage path travels along a series of “edges” of the principal-components re-

gression hyper-rectangle. I have found that q = ±5 is usually adequate to roughly

approximate these q = ±∞ limiting cases.

It is easily shown that the unknown extent of shrinkage that minimizes the MSE

risk of δi · ci as a linear estimate of γi is

δMSEi =
γ2i

γ2i + (σ
2/λi)

=
λi

λi + (σ2/γ2i )
. (13)

These equations can be solved to express γi and σ as functions of λi and of any trial

value for the δi shrinkage factor to yield

γi = ±σ
q
δi/[λi(1− δi)] = ±σ/

q
kλqi , (14)
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where the last expression follows only for ridge estimators in the 2-parameter family

of equation (12). The likelihood that any given ridge estimation minimizes MSE

risk is then defined by maximizing, by choice of the σ̂ estimate and the ± signs, the

likelihood that γ is of the form given in equation (14). The resulting closed-form

solution, Obenchain(1981), is

k̂ = k̂(q) = [
X

λ
(1−q)
j ] · [1−R

2 · CRL2(q)]
n ·R2 · CRL2(q) , (15)

where the “curlicue” function is

CRL(q) =

P ¯̄̄
roj
¯̄̄
λ
(1−q)/2
jqP

ro2j
P

λ
(1−q)
j

. (16)

Furthermore, the most likely q−shape is the one that maximizes CRL(q), Oben-

chain(1975), and can be found by numerical search. Note that these maximum likeli-

hood ridge estimators are more versatile than principal components regression in the

sense that they use both the roi and the λ
1/2
i to select shrinkage factors anywhere in

the range 0 ≤ δi < 1.

A reasonable way to plot traces for the family of equation (12) is first to decide

which p quantities will be plotted vertically, then to fix the value of the shape para-

meter q, and finally to plot with m of equation (11) on the horizontal axis over the

range from m = 0(k = 0) to m = r(k = +∞). In the Stata ADO files, numerical

values for the k parameter are determined implicitly given values for m and q. And
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all trace displays use m of equation (11) on the horizontal axis [instead of k] so that

traces will not only have finite width but will also be much more easily comparable

for different choices of q−shape.

1.3 The Stata ADO Files

This paper presents five Stata programs to estimate and evaluate models using max-

imum likelihood ridge regression.

RXrcrlq: Procedure rxrcrlq determines which q−shape (curvature) for the shrink-

age path is most likely to contain the MSE-optimal ridge estimator. rxrcrlq

searches a user-specified lattice of q−shapes within the range −5 ≤ q ≤ +5.

RXridge: Procedure rxridge performs generalized ridge calculations and displays 5

types of traces of specified q−shape: (i) shrunken coefficients, β∗i of equation

(10), (ii) estimated scaled (or relative) MSE, (iii) excess MSE eigenvalues [OLS

minus ridge], (iv) inferior-direction cosines and (v) ridge shrinkage δ−factors.

RXrmaxl: Procedure rxrmaxl computes 3 types of likelihood criteria to determine

an ideal extent of shrinkage along a path of given q−shape: (i) classical, (ii)

random-coefficients, and (iii) empirical Bayes.

RXrrisk: For specified true model parameters γ and σ and specified path q−shape,

procedure rxrrisk computes and displays 5 types of traces: (i) expected coef-
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ficients, (ii) true, scaled MSE, (iii) true excess MSE eigenvalues, (iv) the true

inferior direction and (v) ridge shrinkage δ−factors.

RXrsimu: For given model parameters and specified path q−shape, generate pseudo-

random responses and a TRACE of the resulting true scaled, squared-error

losses from shrinkage.

Note that the first 3 programs (RXrcrlq, RXridge and RXrmaxl) are the ones

you should find most useful for data analysis and statistical inference. However, you

may use the last 2 programs (RXrrisk and RXrsimu) to convince yourself that the

estimation methods incorporated in the first 3 programs can be expected to work well

in actual practice; in fact, this is the approach that we will use here in Sections 2, 3

and 4.

Our exploration of the Stata programs for likelihood-based ridge regression is or-

ganized as follows. Sections 2 and 3 show how true expected risks and simulated

losses, respectively, can be expected to vary upon shrinkage when the regression pa-

rameters, β and σ, have known values. Unfortunately, these two preliminary sections

have little to do with the usual analysis/inference situation in which ridge regression

is actually applied, i.e. when the unknown regression parameters are to be estimated

from an observed response variable (conditional on given predictor variables.) On the

other hand, we will see in Section 4 that traces of maximum likelihood estimates of

unknown, true MSE risks can mimic the most important features of their population
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analogs from Sections 2 and 3. And illustrating this phenomenon certainly enhances

the credibility of our graphical/likelihood approach to ridge regression analysis.

1.4 Why This Numerical Example?

The remainder of this paper uses the Portland Cement data of Hald (1952) to illustrate

use of the five Stata programs. This dataset is well known and also quite small (only

n = 13 observations on p = r = 4 predictor variables named v3ca, v3cs, v4caf and

v2cs.) This is the numerical example I used in Obenchain(1984) to illustrate that

one’s data can suggest use of a relatively extreme path shape; here, our motivation

for using the q = −5 path shape will be postponed until Section 4, below.

2 Known Model Parameters: RXRRISK

Let us assume that the true values of the uncorrelated components of β are γ =

G0β = (.646, .0, .323, .108)0 and the true error standard deviation is σ = .215. [These

are numerical values fairly close to their least squares estimates for the heat response

variable of Hald(1952); namely, γ̂ = (.657, .008, .303, .388)0 and σ̂ = .163.] Figures 1

to 4 display expected shrinkage results for the q = −5 family of (12) using program

rxrrisk for shrinkage risk analysis.

matrix rxsigma = (.215)

matrix rxgamma = (.646,.0,.323,.108)
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Figure 1: Expected Shrinkage Coefficients (q = −5)

rxrrisk heat v3ca v3cs v4caf v2cs, q(-5) m(2) t(0.001)

Figure 1 shows how the expected values of the ridge coefficients change as bias is

introduced via the q = −5 family. The true regression coefficient vector, β = Gγ =

(.552, .332,−.020,−.344)0, is displayed at m = 0 in Figure 1. Thus the first two, true

coefficients are positive while the last two are negative. In particular, note that bias

introduced by shrinkage along the q = −5 path can tend to make β3 somewhat more

negative than its true value of −.020.

Figure 2 gives the associated scaled (or “relative”) MSE risks defined as follows.

Risk is expected loss (or “mean” squared error), and the scaled risk values plotted

in Figure 2 are the diagonal elements of the mean squared error matrix each divided
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Figure 2: True Scaled MSE Risks (q = −5)

by σ2. Scaled risk values measure the uncertainty in an estimate as a multiple of

the variance of a single observation. Scaled risk values also have the advantage of

being known values for least-squares estimates even when regression parameters are

unknown. For example, the values at the left extreme (m = 0) of Figure 2 are the

diagonal elements of (X 0X)−1, which do not depend upon β = Gγ or σ.

The eigenvalues of the difference in scaled risk matrices (least squares minus ridge)

are displayed in Figure 3. As long as these eigenvalues are all non-negative, no linear

combination of least squares coefficients has smaller risk than the corresponding linear

combination of ridge coefficients.

At most one excess eigenvalue can be negative, Obenchain(1978), and the cor-
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Figure 3: True Excess Eigenvalues (Least Squares minus Ridge)

responding normalized eigenvector, Figure 4, points in the inferior-direction of

p−dimensional space along which ridge has higher risk than least squares. For exam-

ple, the 1st and 3rd direction cosines (for variables v3ca and v4caf) are nearly equal

when an inferior direction appears at m = 1.5 in Figure 4. Linear combinations like

β1−β3 are thus essentially orthogonal to the inferior direction at this m, so the ridge

estimate of β1−β3 probably has lower risk than least squares. But the ridge estimate

of β1 + β3 near m = 1.5 can possibly have higher risk than least squares because this

linear combination has a relatively large projection onto the inferior direction.

Figures 1 to 4 indicate that our numerical example is amenable to ridge shrinkage

with q = −5 in equation (12). The trace of the scaled risk matrix decreases from 51.8
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Figure 4: True Inferior Direction Cosines (q = −5)

at m = 0 to 0.787 at m = 1.0 and then starts increasing again. Thus an m value

of about 1 is risk optimal when q = −5, and this is like saying that ill-conditioning

has effectively reduced the rank of the regressor matrix by 1 from 4 to 3. This makes

very good sense in this example because the regressor matrix comes from a “mixture”

equipment with the four regressors adding (except for a relatively large round-off

error) to 100%.

3 Simulated Responses: RXRSIMU

The logical next step in exploring our numerical example is to use pseudo-random

numbers to simulate a response vector for this model using procedure rxrsimu. The
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Figure 5: Scaled, Squared-Error Losses (q = −5)

results from a single invocation of rxrsimu are given in Table I and Figure 5.

matrix rxsigma = (.215)

matrix rxgamma = (.646,.0,.323,.108)

rxrsimu heat v3ca v3cs v4caf v2cs, q(-5) m(2) t(0.001)
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Table I. RXrsimu Responses and Expected Values

ysim yexp ysim yexp

1 -1.123823 -1.115518 8 -1.119887 -1.29178

2 -1.251552 -1.477537 9 -.2948058 -.2422573

3 .6228011 .7167597 10 1.434455 1.351851

4 -.4981516 -.3721892 11 -1.18242 -.8970727

5 -.0099682 -.0052348 12 1.404445 1.091648

6 .42115 .6511954 13 1.229661 1.043567

7 .3680945 .5465683

Note that minimum overall loss occurs at about m = 1.0 in Figure 5. Also,

remember that the expected value of the scaled, squared-error loss trace of Figure 5

would be the scaled MSE risk trace of Figure 2.

4 Data Analysis/Inference: RXRIDGE

Let us now continue our numerical example from Sections 2 and 3 by analyzing the

simulated responses using procedure rxridge as if we had no knowledge of the true

regression parameter settings used to generate the data.

rxridge ysim v3ca v3cs v4caf v2cs, q(-5) m(2) t(0.001)
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Figure 6: Trace of Shrinkage Coefficients (q = −5)

RXridge: Shrinkage Path has Qshape =-5.00

RXridge: Estimated Sigma = .21311153

RXridge: Uncorrelated Components... Number of obs = 13

Coefficient Std. Error t-statistic p-value Lower 95% Upper 95%

c1 .6526046 .0411443 15.861 0.000 .5577258 .7474834

c2 -.022923 .0490037 -0.468 0.652 -.1359258 .0900798

c3 .2709772 .1424142 1.903 0.094 -.0574305 .599385

c4 1.364187 1.526713 0.894 0.398 -2.156419 4.884793

Note that only the estimates of the 1st and possibly 3rd uncorrelated components

are statistically significant, but the 4th component is huge, numerically. Thus our
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Figure 7: Estimated Scaled MSE (q = −5)

rxrsimu generated response vector is even more susceptible to ill-conditioning in X

than were the original heat data of Hald(1952).

Note in Figure 6 that all four least-squares estimates for coefficients are positive

(m=0) and that shrinkage to at least m = 1 is required to produce ridge coefficients

with the “right” numerical signs.

Figures 7-9 are traces of estimates of scaled risks, excess eigenvalues, and inferior

direction cosines, respectively (Obenchain 1978, 1981). These traces are all based

upon normal-theory maximum-likelihood, but scaled risk estimates have, first, been

adjusted using known constants that make them unbiased and then truncated, if

necessary, so as to have correct range (i.e. no scaled risk estimate is given that is
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Figure 8: Estimated Excess SMSE Eigenvalues (q = −5)

Figure 9: Estimated Inferior Direction Cosines (q = −5)
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below its scaled variance lower limit.)

Visual examination of Figures 6-9 suggests that the ridge solution at m = 1.0 in

the q = −5 family has much more desirable risk characteristics than does the least

squares solution.

5 Shrinkage Path Shape: RXRCRLQ

So far we have plotted traces using only shape q = −5 in (12). This is because q = −5

was the MSE optimal shrinkage path shape for the original Hald(1952) data. And we

can use procedure rxrcrlq to verify that this is also the best choice for the rxrsimu

generated data.

rxrcrlq ysim v3ca v3cs v4caf v2cs

23



Table II. RXrcrlq Choice of Shrinkage Path q-shape

q-shape MCAL k CRL(q) Chi-Square

+5 3.9620787 1.760e+08 .05583205 45.426121

+4 3.961938 3416311.2 .05593933 45.425969

+3 3.9597236 62767.277 .0576044 45.423578

+2 3.8986512 460.94542 .09406287 45.353457

+1 1.4705107 .58134686 .59741232 39.943159

0.0 1.7167549 2.4715085 .78595994 33.585201

-1 2.0447908 40.498435 .83293916 30.942830

-2 2.1182805 727.90415 .86989888 28.259285

-3 2.1182927 13417.735 .90110205 25.337028

-4 2.1129101 254461.68 .92596664 22.318394

-5 2.1115136 4990888.1 .94490765 19.354315

RXrcrlq uses the maximum likelihood equations (15) and (16) to evaluate alter-

native q−shapes for the shrinkage path. Here, the most likely q−shape is −5 because

it achieves maximum CRL(q) and minimum Chi-Squared in Table II. This minimum

Chi-Squared has degrees-of-freedom= 2 and significance level= 0.000. Thus the 2-

parameter generalized ridge family is probably too restrictive (unlikely to contain the

MSE optimal shrinkage factors) for this example.
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Is there a family of shrinkage (δ) factors “less restrictive” than equation (12)

that we could consider? Not really; I know of no proposals for, say, a 3−parameter

family. A full r−parameter solution (in which each δ factor is estimated separately)

is possible, but this would impose no “smoothness” requirements, whatsoever, on

shrinkage factors. (In the current example, the data strongly suggest taking δ2 much

smaller than δ1 or δ3, but there is very little potential for MSE reduction by such a

“greedy” tactic because γ̂2 = −.02 is already tiny, numerically.) Besides, r−parameter

estimates are not amenable for visual display using ridge traces!

It’s a straightforward task to generate traces for several different values of q and

to make a choice (either objective or subjective) of which shape one likes best. These

traces can change shape and, thus, interpretation quite drastically as q changes. Ob-

viously unfavorable choices of q will have minimum SMSE risk either at or very close

to m = 0 in Figures 2 and 7. Furthermore, a negative excess eigenvalue will not

only appear for very small m values in Figures 3 and 8 when q is unfavorable, but

this negative eigenvalue will also dominate the most positive eigenvalue in absolute

magnitude. Anyway, the most likely q−shape (which is −5 in our current example)

usually strikes me as being adequately “general” even when the rxrcrlq chi-squared

statistic is significantly greater than zero.

A search on a finer lattice of q values over a wider range than−5 ≤ q ≤ +5 could be

considered, of course, but we must remember that the primary purpose of the rxrcrlq
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calculations of Table II is simply to interest us in examining the corresponding trace

displays.

6 Shrinkage Extent: RXRMAXL

Other maximum likelihood approaches besides the classical, fixed coefficient approach

of Obenchain (1975, 1981) are possible, but they do not yield closed form expressions

for the optimal k or m given q. The empirical Bayes approach of Efron and Morris

(1977) and the random coefficient method of Golub, Heath, and Wahba (1979) and

Shumway (1982) are two maximum likelihood alternatives implemented in rxrmaxl.

This program “monitors” all three of the above likelihood criteria on a lattice of m

values, referring to them as CLIK, EBAY, and RCOF, respectively.
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Table III. RXrmaxl Choice of Shrinkage Extent

MCAL CLIK EBAY RCOF

0 ∞ ∞ ∞

0.5 1.742e+12 83.985422 84.219263

1 9.889e+11 74.129038 74.567306

1.5 445435.87 31.003878 32.064207

2 738.64505 19.480671 << 20.780788 <<

2.5 27.939063 << 28.330190 21.782698

3 35.164964 71.501773 31.229391

3.5 39.875945 151.47765 39.478093

4 45.465477 256.22102 45.465477

The maximum-likelihood choices for m-extent of shrinkage are the ones that min-

imize the CLIK, EBAY or RCOF criteria, above. I used rxrmaxl to produce Table

III on the ysim variable generated by rxrsimu within the q = −5 family. (CLIK

is a minus two log likelihood ratio whose minimum has an asymptotic chi-squared

distribution with two degrees-of-freedom, as in Table II. EBAY and RCOF are nor-

malized so that they cannot become negative, but their minima do not apparently

have asymptotic chi-squared distributions.) Anyway, the EBAY and RCOF criteria

both favor m = 2 when q = −5 while CLIK favors m = 2.5. Thus, using the “2/r-ths
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Rule-of-Thumb” of Obenchain(1978) for the extent of shrinkage likely to be “good”

(i.e. to dominate least-squares in a matrix MSE sense) in this p = r = 4 predictor

model, we again find that shrinkage to at least m = 2× 2/r = 1 is highly desirable.

The primary reservation that comes to my mind concerning the calculations of

Table III is that they are difficult to plot, at least simultaneously. All start at +∞ at

m = 0, and EBAY can also be very large as m approaches p. And, again, minimum

values are not comparable. However difficult they may be to produce, plots of these

minus two log likelihoods are of interest because one needs to “see” how “flat” each

is near its minimum.

7 Numerical Example: SUMMARY

The most striking feature of our example is the extent to which the rxridge estimates

of Section 4 mimic their expected values from rxrrisk of Section 2. I assure the reader

that this mimicry is typical rather than an artifact of the single set of simulated

responses generated using rxrsimu in Section 3. (The overall signal-to-noise ratio

here was β0β/σ2 = 2.5 when the diagonal elements of X 0X were scaled to equal

(n − 1) = 12, and one might expect much less mimicry with much lower ratios.) To

any skeptic, I simply suggest... “Why not try it for yourself?”

Next, I ask you to reexamine the estimated traces of Section 4. Isn’t it remarkable

how much incredibly detailed information is contained in these traces concerning the
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extent and effects of shrinkage on ill-conditioned estimates of regression coefficients?

8 Stata Syntax

rxrcrlq [depvar [varlist] [if exp] [in range] ] [, qmin(#) qmax(#) nq(#) rescale(#)

tol(#) ]

rxridge [depvar [varlist] [if exp] [in range] ] [, msteps(#) qshape(#) rescale(#) tol(#)

]

rxrmaxl [depvar [varlist] [if exp] [in range] ] [, msteps(#) qshape(#) omdmin(#)

rescale(#) tol(#) ]

matrix rxsigma = (#)

matrix rxgamma = (#,...,#)

rxrrisk [depvar [varlist] [if exp] [in range] ] [, msteps(#) qshape(#) omdmin(#)

rescale(#) tol(#) ]

rxrsimu [depvar [varlist] [if exp] [in range] ] [, msteps(#) qshape(#) start(#) rescale(#)

tol(#) ]

qmin(#) specifies the minimum q−shape to evaluate. The default value is qmin=

−5, and qmin cannot be reset to any value greater than −2.
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qmax(#) specifies the maximum q−shape to evaluate. The default value is qmax=

+5, and qmax cannot be reset to any value less than +2.

nq(#) specifies an integer number of q−shape values to evaluate between qmin

and qmax, inclusive. The default value is nq= 21, and nq cannot be

reset to any integer value less than 9.

msteps(#) specifies the number of steps per unit increase inm, the multicollinear-

ity allowance parameter; the default value is 4. The total number of

steps along the generalized shrinkage path from the Least Squares solution

(m = 0) to all ZERO coefficients (m = r) will thus be 1+(msteps×r),

where r = rank(X).

qshape(#) controls the shape (or curvature) of the generalized shrinkage path

through likelihood space; the default value is 0, which yields Hoerl-Kennard

”ordinary” ridge regression. qshape=1 yields uniform shrinkage, and all

qshape values between +5.0 and −5.0 are allowed.

rescale(#) controls the scaling of the response variable and all p predictor variables

in the varlist. The default value is rescale= 1 to scale all “centered”

variables to have sample variance 1 (sample sum-of-squares equal to one

fewer than the number of observations.) To retain the scaling of variables

given in the Stata “.DTA” file, specify rescale(0).
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tol(#) specifies the search convergence criterion and defaults to 0.01.

omdmin(#) is the strictly positive minimum value to be used for calculation of

(1− δ) shrinkage factors; the default is omdmin= 10e− 13.

start(#) controls Stata’s uniform() random number seed value, and the RXrsimu

default value is 12345. If you make repeated rxrsimu runs without chang-

ing this seed, you will get the same pseudo-random values each time! When

you do change start, make it positive.

Restrictions The RXridge programs (rxrcrlq, rxridge, rxrmaxl, rxrrisk, and rxr-

simu) do not treat multiple regression models that lack an intercept (constant)

term; the number, p, of (nonconstant) predictor variables, X, in the varlist

must be at least 2; if p is greater than 20, Stata will refuse to draw trace

plots; the depvar, y, must be nonconstant; and no missing values are allowed.

RXridge programs internally “center” all variables to have mean zero, and the

fitted (hyper)plane then always passes through ȳ = 0 at X̄ = 0. The implied

y−intercept at the original X origin can, of course, be determined implicitly as

the coefficients for the p, nonconstant regressors change, but this y−intercept

is not calculated by the RXridge programs.

In addition to Stata, I have programmed my maximum-likelihood ridge algorithms

in SAS/IML, S-PLUS and GAUSS. And Bernhard Walter, Technische Universitaet
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Muenchen, has created splendidly interactive routines for XLisp-Stat. However, the

most complete implementation of my algorithms is undoubtedly provided by my

stand-alone systems for MS-DOS personal computers: RXridge.EXE, RXtraces.EXE

and PathProj.EXE, Obenchain(1991) and Nash(1992). For example, RXridge.EXE

calculates inference intervals (classical, confidence and Bayes HPD) for shrunken co-

efficients as well as performs ridge residual analyses (outlying responses and/or high

leverage regressor combinations.) I distribute all of the above software systems as

freeware.
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