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RXridge.LSP: “Shrinkage/Ridge Regression” ver. 2008

for use with... 

XLisp-Stat release 3+ 

softRX freeware, c/o Bob Obenchain 

5176 Upperwood Ct, Indianapolis IN 46250-1776, USA. 

internet: wizbob@att.net   http://localcontrolstatistics.org 

Introduction
RXridge.LSP adds shrinkage regression calculation and graphical ridge “trace” display 
functionality to the XLisp-Stat release 3+ implementation of LISP-STAT, Tierney(1990). 
Shrinkage/ridge methods examine possible effects of ill-conditioning (numerical and/or 
statistical) among predictor variables on the relative magnitudes and numerical signs of 
fitted coefficients in multiple linear regression models.  RXridge.LSP focuses on 
maximum likelihood approaches to statistical inference under normal distribution 
theory, Obenchain (1975, 1978, 1984, 1995, 1996a), concerning variance-bias trade-offs 
that can reduce overall mean-squared-error risk via shrinkage. 

Other somewhat unique/innovative features of my softRX freeware™ systems for 
shrinkage/ridge regression include usage of (i) the MCAL = “multicollinearity 
allowance” measure for extent-of-shrinkage as the horizontal axis on all TRACE plots 
and (ii) a second ridge parameter, Q, that controls the shape (or curvature) of the 
shrinkage path through likelihood space.  These two parameters, Q and m, are defined 
and implemented as follows: 

The 2-parameter family of generalized ridge estimators implemented in RXridge.LSP can 
be written, Goldstein and Smith(1974), as 

β * [ 'X X= + k  ( X⋅ ' X ) Q −] 1 X ' y ,
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where RXridge.LSP limits the Q-shape to integer and half-integer values within [-5, +5] 
and the range of k goes from k = 0 ( β * = OLS ) to k =+∞ ( β * = 0.)  Writing the singular 
value decomposition of regressors as X H G= Λ 1 2/ ' , where Λ  is the diagonal matrix 
of eigenvalues of X X' , these estimators are of the general form... 
 

β * / '= =−G H y G cΔΛ Δ1 2
, 

 
where the columns of G are the direction cosine vectors for the principal axes of X, Δ  is 
the diagonal matrix of multiplicative shrinkage factors, 0 1≤ ≤δ i , and c is the column 
vector of uncorrelated components of the OLS solution.  This shows that the shrinkage 
factor applied along the i-th principal axis is of the specific form 
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Rather than use k = “additive eigenvalue inflation factor” to index various extents of 
shrinkage along a Q-shape path, RXridge.LSP uses 
 

MCAL p rank X tracep= − − − − = −δ δ δ1 2 K ( ) ( )Δ   . 
 
Note that the range of MCAL is finite: 0≤MCAL≤p.  Whatever may be your choice of 
Q-shape, the OLS solution always occurs at the beginning of the shrinkage path at 
MCAL=0 (k=0 andΔ = I ) and the terminus of the shrinkage path, where the fitted 
regression hyperplane becomes “horizontal” (slope=0 in all p-directions of X space) and 
$y y= , always occurs at MCAL=p (k=+∞  andΔ = 0 ). RXridge.LSP uses Newtonian 

descent methods to compute the numerical value of k corresponding to given values of 
MCAL and Q-shape. 
 
In addition to having finite (rather than infinite) range, MCAL has a large number of 
other advantages over k when used as the scaling for the horizontal axis of ridge TRACE 
displays.  For example, the first figure below illustrates that shrunken regression 
coefficients with stable relative magnitudes form STRAIGHT LINES when plotted 
versus MCAL. Similarly, the average value of all p shrinkage factors is (p-MCAL)/p, 
which is Theil's proportion of Bayesian posterior precision due to sample information 
rather than to prior information and which decreases linearly as MCAL increases.  
Perhaps most importantly, MCAL can frequently be interpreted as the approximate 
deficiency in the rank of X.  For example, if a regressor X X'  matrix has only two 
relatively small eigenvalues, then the coefficient ridge trace of best Q-shape typically 
"stabilizes" at about MCAL =2.  I.E., the coefficient trace then consists primarily of fairly 
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straight lines between MCAL=2 and MCAL=p.  This last point is illustrated by the 
second plot below for the infamous Longley p=6 regressor dataset. 
 
 

Figure 1: Coefficients with perfectly stable relative magnitudes, path Q-shape=+1. 

 
 
 

Figure 2: Coefficients that approximately stabilize at and beyond roughly 
MCAL = 2 for the Longley Data when the path has Q-shape = −1.5. 

 
 
To locate the 2-parameter shrinkage/ridge estimator most likely to minimize overall 
MSE risk, Obenchain (1996a) provides both (i) a closed form expression for the optimal 
value of  k (and thus m = MCAL) given Q and (ii) a simple expression [the “curlicue” 
function, CRL(Q)] that, when maximized via numerical search, identifies the shrinkage 
path of optimal Q-shape.  RXridge.LSP implements these as well as a number of other 
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sound, objective, data analytical methods for picking an appropriate form and extent of 
shrinkage.  
 

Displaying RXridge Menus 
 
There are three somewhat different ways to invoke the RXridge.LSP code to analyze a 
dataset.  Personally, I prefer method “C” …described on page 7.  
 

Possibility A: 
 
You start by loading RXridge.LSP either from XLisp-Stat’s “File” menu item or else 
by entering a XLisp expression like... 
 

Windows>      (load “drive:\\path\\rxridge.lsp”) 
or 

Mac>       (load “path.to.rxridge.lsp”) 
 
You will probably find loading of RXridge.LSP using XLisp-Stat’s “File” menu much 
easier than entering a (load “path-etc.”) expression whenever your copy of the 
RXridge.LSP file is not in XLisp-Stat’s main xlslib MS-DOS sub-directory or Mac 
folder. 
 
Next, enter the Xlisp expression... 

(srx-menu) 
 
This second action adds a new main entry to the XLisp-Stat menu bar named 
'softRXridge' with two menu items: 
 

 
 

This is an easy way to use RXridge.LSP to perform shrinkage-regression on a dataset you 
have used before in XLisp-Stat. 
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Possibility B: 

 
First, load RXridge.LSP as in option 'A' above.  Next, invoke (RXridge-load-compute) 
by entering... 
 

(RXridge-load-compute) 
or 

(def my-model (RXridge-load-compute)) 
 
The latter tactic saves your regression-model object in the XLisp-Stat variable MY-
MODEL.  This has the advantage that you can send messages to your model object such 
as... 

(send my-model :RXridge-qp) 
 

(send my-model :RXridge-seed #$(1 #(214748 920333 169369 773360))) 
 
to display the current setting of the shrinkage path Q-shape parameter and to reset the 
saved random number generator seed/state, respectively.  (You will probably need to 
copy and paste from the XLisp-Stat Listener window to reset the seed/state as shown 
above.  Valid seeds can consist of 4 ten-digit numbers rather than just the six-digits 
shown in the above example.)  To learn about all possible 'RXridge-' messages, you 
would need to examine the RXridge.LSP code file. 
 

NOTE: The only real difference between options 'A' and 'B' is 
that no 'softRXridge' menu will appear in approach 'B.' 

 
Upon invoking (RXridge-load-compute) via either option 'A' or 'B', a system FILE 
locator dialog window appears, allowing you to select a data file with a name of the 
form *.dat.  Unfortunately, the XLisp-Stat default file mask is designed to locate only 
'*.lsp' files.  You may, of course, edit the '*.lsp' mask ...changing it to '*.dat' ...and then 
press the enter key.  This changes the default mask and allows you to locate all *.dat 
files. 
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On the other hand, you could edit the '*.lsp' mask ...changing it to the full 'filename.dat' 
for the specific file you wish to read ...then press the enter key. 
 
Once you select a specific *.dat file, the code searches for a file with the same initial 
filename, but extension '.nam' instead of '.dat'.  You may list NAMES for variables (in 
column order) in a *.nam file.  But names are optional in the sense that, when this '.nam' 
file cannot be found, variables will be named 'Var1', 'Var2', ..., etc. 
 
Next, a dialog box appears that allows you to select the response variable by clicking on 
its name. 
 

 
 
After that, another dialog box pops up with all the remaining variables pre-selected.  If 
you want to exclude a variable from computation, deselect it here so that it will not be 
included as a regressor.  Be certain you deselect any character variables that represent 
observation labels! 
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When your regression-model is first computed, XLisp-Stat's “built-in” OLS statistics are 
written to the Listener.  Then a new entry will appear on the XLisp-Stat menu bar named 
by the filename for your dataset.  This is the RXridge Main-Menu for use ONLY with the 
current dataset and regression-model object. 
 
 

Possibility C: 
 
Instead of loading RXridge.LSP directly, you can load a specially prepared “example” 
file, such as “mpg.lsp”, that contains the (require “RXridge”) directive, reads in your 
data, names the variables, names the regression-model object, and creates an RXridge 
Menu for analysis of the given dataset.  The “mpg.lsp” example file (contained in the 
softRX distribution archive) for the Hocking(1976) miles-per-gallon dataset illustrates 
Lisp coding details for this option, 'C.'  Simply use your favorite text editor or LispEdit 
to mimic/modify the contents of 'mpg.lsp' or one of the other example files to create/save 
an initialization file for your own dataset. 
 
 

Example: Contents of a Type ‘C’ *.LSP Specification File 
 
(require "RXridge") 
(def mpg-dat (read-data-columns "mpg.dat" 6)) ; last column contains 
labels 
(def cyl     (select mpg-dat 0))                 ; get single variables 
(def cub    (select mpg-dat 1))                ; out of read data 
(def hp      (select mpg-dat 2)) 
(def wght  (select mpg-dat 3)) 
(def mpg   (select mpg-dat 4)) 
(def mpg-reg (regression-model (list cyl cub hp wght) mpg 
                        :predictor-names '("CYL" "CUB" "HP" "WGHT" ) 
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                        :response-name "MPG" 
              ) 
) 
(format t "(The RXridge regression model object is 'mpg-reg') ~%") 
(send mpg-reg :RXridge-menu "MPG") 
(send mpg-reg :RXridge-compute-summary) 

 
Option 'C' is, perhaps, best for users who want to keep on file a permanent record of 
exactly which datafile was read-in and how variables and objects were named.  This sort 
of user would probably also want to turn “Dribble” on (via the Windows “File” menu or 
Mac “Command” menu) to capture everything that RXridge.LSP writes to the Listener in 
a permanent text file. 

 
Using an RXridge “Dataset Specific” Menu 
 
An RXridge “Dataset Specific” Menu is a main-menu entry named after your dataset.  
There can be several such main-menu-items at any one time, each dealing only with its 
own dataset and model objects.  This strategy would allow a user to visually compare 
results from different models …possibly for the same data, e.g. different regressor 
subsets and/or x-axes (re-)scalings. 
 
 

 
 

Note that the RXridge main-menu contains 16 items arranged into 6 groups.  The natural 
order for invocation of items is generally from-top-to-bottom.  But you can skip over any 
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item that is of little interest to you ...say, because that item controls a parameter setting 
whose default value you currently consider satisfactory. 

 
Group One: 
 
Choice of Regressor-Response Scaling 
 

 
 

Note the default here is to not only “center” the response and regressor variables at 
zero (by subtracting off their sample means) but also to “scale” each variable by 
dividing its centered values by their sample standard deviation.  The resulting sum-
of-squares of centered and rescaled observations on each variable will then be (n-1), 
the number of observations minus one.  This choice of preliminary scaling eliminates 
what Marquardt(1980) called “non-essential” ill-conditioning before computing 
summary statistics for the principal axis rotation of regressor variables. 
 
Note that the last option is to perform initial centering and scaling, estimate all effects 
using these standardized coordinates, and then (at the very end) re-express results 
back in terms of the original, given X and y coordinates.  Thus, although principal 
axis decompositions are not scale invariant, this option does lead to predictions, 
$ *y X= β , which are scale invariant by their very definition! 

 
Compute Principal Axis Summary 
 

You should generally invoke this item after any change in regressor/response scaling.  
But, if you don’t click here first, the corresponding code will always still execute 
when needed prior to computations spawned by other RXridge menu items. 
 
You may also use this item simply to refresh your memory about summary statistics 
that characterize the form and extent of ill-conditioning ...i.e. rather than scrolling 
back through RXridge output previously written to the XLisp-Stat Listener 
 
 
 
Example: Principal Axis Summary Statistics for the Longley Data 
 
******************  Shrinkage/Ridge Regression ******************** 
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softRX freeware (c) by Bob Obenchain for XLisp-Stat 2.1 Release 3+.  
Version 9602...Vast majority of Lisp code by Bernhard Walter(1994).  
******************************************************************* 
 
Principal Axis Summary Statistics of Ill-Conditioning 
 
(Regressors and Response are centered/scaled)  

 
   Eigenvalue  Sing.Value  Uncorr.Comp.  Princ.Corr.      t-stat 

  1   69.05066     8.30967       0.44565      0.95617    42.66163  
  2   17.63011     4.19882      -0.11157     -0.12096    -5.39673  
  3    3.05138     1.74682       0.52973      0.23892    10.66005  
  4    0.22392     0.47321      -0.10174     -0.01243    -0.55461  
  5    0.03828     0.19566      -1.75680     -0.08875    -3.95979  
  6    0.00565     0.07517       1.98275      0.03848     1.71702  
 
Adjusted Response Sum-of-Squares:   15.00000  
Residual Mean Square for Error:      0.00753  
Estimate for Residual Std. Error:    0.08680 
. 

 
Group Two: 
 
Identify Most Likely Path Q-shape 
 

This item uses the closed-form expressions of Obenchain(1981, 1996a) to identify the 
shrinkage path Q-shape (and the MCAL-extent of shrinkage along that path) which 
have maximum classical (fixed coefficient) normal-theory likelihood of achieving 
overall minimum MSE risk in estimation of regression coefficients. 
 
For the centered/scaled Longley data, this best path shape turns out to be Q =−1 5. . 
 
The figure below illustrates the variety of path Q-shapes in the two-dimensional case, 
p=2.  Well-known special cases of Q-shape paths (in 2 or more dimensions) are... 
 

Q = 0 for Hoerl-Kennard(1970) “ordinary” ridge regression, and 
 
Q = +1 for uniform shrinkage.  (See also Figure 1.) 

 
An extremely important limiting case is... 
 

 Q = −∞  for principal components regression. 
 

Marquardt(1970) calls this limit “assigned rank” regression.  I have found that the 
Q=−5  path is frequently quite close to this limiting case, numerically.  In the above 
figure, the Q=−1 path is already quite close to the limiting case in p=2 dimensions. 
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As a general rule-of-thumb, paths with Q-shapes within the [-1,+2.] range generally 
tend to be fairly “smooth” or have “rounded” corners.  Paths with Q-shapes greater 
that +2 or less than -1 can display quite “sharp” corners.  In fact, the paths with 
limiting shape ±∞  are actually linear splines with join points at integer MCAL 
values! 

 
Set Shrinkage Path Q-shape 
 

 
 

This menu item brings up a slider that allows you to select a shrinkage path Q-shape 
within [-5,+5] in steps of 0.5.  
 
 
 
SUGGESTION: Why not explore the Q-shape path most likely to be MSE optimal? 
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Set Number of STEPS per Shrinkage Unit 
 

This item brings up a slider that allows you to select a value for STEPS in the [1,100] 
range.  The default value is 4.  The total number of values along the shrinkage path at 
which calculations will be performed will be STEPS*Rank(X)+1.  Thus STEPS=1 
generates the fewest calculations, while larger values typically yield more highly 
detailed TRACE plots. 

 
 
Identify Most Likely Shrinkage M-extent. 

 
No closed-form expressions exist for the empirical Bayes [Efron and Morris(1976)] 
or random coefficient [Golub, Heath and Wahba(1979), Shumway(1982)] maximum 
likelihood approaches to shrinkage.  So this menu item simply performs a search, 
using both the lattice of steps in MCAL and the Q-shape for the shrinkage path that 
you selected using other menu items, above.  A minus-two-log-likelihood-ratio is also 
listed for the classical (fixed coefficient) approach, but the finite steps-per-MCAL-
unit restriction in effect here usually makes these classical calculations somewhat less 
accurate than those from the “Most Likely Q-shape” option, above. 
 
For the centered/scaled Longley data and path Q-shape =−1 5. , the classical extent of 
shrinkage most likely to minimize overall MSE risk is approximately MCAL=+4. 
 
According to the "2/p-ths rule" of Obenchain(1978), the MCAL shrinkage extent for 
"good" (multivariate) ridge estimates, relative to ordinary-least-squares, is roughly a 
factor of [two divided by p] times the "optimal" (univariate) MCAL value.  Since 
rank(X) = p = 6 for the Longley data, we see that a somewhat more conservative 
approach would limit shrinkage for the Longley data to about MCAL = (2/6) * 4 = 
1.33. 

 
 
Group Three: 
 
List Shrinkage Trace Details 
 

This item writes numerical matrix listings of shrinkage results to the Listener, with 
one row for each step in MCAL value.  If these details are of interest to you, you 
should probably be saving them in a permanent “Dribble” file. 

 
Display Shrinkage TRACE Plots 
 

Use a dialog box to select which of the 5 types of traces you want to view.  These 
trace displays are linked ...with curves numbered 1 to p = number of regressors = 
number of principal axes with positive variance. 
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bstar: fitted shrinkage coefficients 
 

The coefficient trace shows how point estimates change as shrinkage along a Q-
shape path occurs.  The trace curve for any regression coefficient estimate that 
becomes numerically "stable" will remain fairly straight for the rest of its journey 
to β i

* = 0  at MCAL=p.  Unstable coefficient estimates usually tend to change 
more quickly than stable coefficients, possibly switching numerical sign or 
oscillating as shrinkage occurs.  (See Figure 2, above for the Longley data.) 

 
     risk: estimated scaled (relative) MSE risk 

 

 
 
This trace gives normal distribution theory, "modified" maximum likelihood 
estimates, Obenchain(1978), of “scaled” MSE risk as Q-shape shrinkage occurs. 
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Relative risk is "scaled" by dividing a risk estimate by an estimate of the error 
variance. In other words, scaled risk expresses imprecision in fitted 
coefficients in units that are multiples of the variance of a single observation. 
 
Maximum likelihood scaled risk estimates are first "modified" so as to be 
unbiased.  Then they are adjusted upward, if necessary, to have correct 
range relative to a known lower bound on scaled risk, which re-introduces 
some bias. 

 
 
exev: estimated Eigenvalues of [ VAR(ols) - MSE(ridge) ] matrix 
 

This trace plots the EigenValues of the estimated difference in scaled MSE risk 
matrices, ordinary-least-squares minus ridge.  As long as all EigenValues are zero 
or positive, there is reason to hope that the corresponding ridge estimators yield 
smaller MSE risk than Least Squares for all directions in p-space (i.e. all 
possible linear combinations.)  However, as shrinkage continues, at most one 
negative EigenValue will appear, Obenchain(1978). 

 
 
infd: estimated inferior direction cosines 
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This trace plots the Direction Cosines (normalized EigenVector) corresponding to 
the negative EigenValue (if any) of the difference in Mean-Squared-Error 
matrices, OLS - ridge.  This direction gives that single linear combination of ridge 
regression coefficients that not only fails to benefit from Q-shape shrinkage but 
probably actually suffers increased risk due to shrinkage. 

 
delta: shrinkage delta factors 
 

This trace plots the Delta Shrinkage-Factor Pattern as Q-shape shrinkage occurs.  
All deltas are equal when Q=1; the trailing deltas are small when Q < 1; and the 
leading deltas are small when Q > 1. 

 

 
 
NOTE: Curve numbers on “exev” and “delta” traces refer to principal axes, not to 
regressors. 

 
 
Group Four: 
 
Visual Re-Regression and Influence 
 

This item displays a slider that allows you to move through all computed MCAL 
steps.  Two plots connected to this slider change dynamically as this MCAL = extent-
of-shrinkage changes. 
 

 
 
The first plot shows observed response y-values vertically vs. their standardized 
shrinkage fit-values (i.e. composite regressor x-coordinates) horizontally.  The BLUE 
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line on the plot represents this shrinkage fit, while the RED “Visual-Re-Regression” 
line displays the regression of the response y-values onto the composite x-
coordinates. 
 

 
NOTE:  The slope of the BLUE line decreases as shrinkage becomes extreme, giving 
the RED line the appearance of being a much better fit to the response y-values.  
Thus this display provides a clear, visual warning when one's shrinkage/ridge 
estimator becomes too seriously biased. 
 
It is rather simple to spot outlying responses and high leverage regressor 
combinations on this response vs. composite-predictor plot.  Outlying responses have 
large residuals, and the points with highest leverage are the ones at either (left or 
right) extreme along the composite x-axis!  On the other hand, considerable 
information can be lost in displaying a multiple regression (p>1) fit using only 
coordinates along any single (p=1) composite axis.  It turns out that p = one 
dimensional leverages can be quite distorted! 
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The second, linked “influence” plot shows squared, standardized residuals vertically 
vs. regressor-combination leverages (in p>1 dimensions) horizontally.  A dashed 
horizontal line at 4 serves as a “warning line” for outlying residuals, while a dashed 
vertical line [Chatterjee and Hadi(1988), page 32] serves as a “warning line” for 
leverages. 

 
 
A second slider controls levels of overall Cook-influence ...defined as the product of 
a squared, standardized residual times its leverage.  The corresponding “contours” of 
constant overall Cook-influence are displayed as HYPERBOLAS in BLUE.  As 
ridge/shrinkage occurs, points tend to move to the left and/or upwards on this plot; 
this shows that ridge/shrinkage tends to reduce the leverage of every regressor 
combination (row of X) and to (ultimately) increase the size of residuals. 

 
Plot Component Size vs. Significance (or SIZ-SIG plot) 
 

This is a plot of absolute values of t-statistics for OLS coefficients versus the absolute 
size of these OLS coefficients.  When all regressors are uncorrelated (no ill-
conditioning is present) and rescaled (i.e. all sample variances are equal), then all of 
the points in this plot would lie on a single straight line passing through the origin.  
I.E. numerical size and statistical significance are synonymous in this highly 
desirable case! 
 
How close are your points to a single, straight line??? 
 

Figure 3: SIZSIG Plot for the Longley Data. 
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Group Five: 
 
Specify True Values of Parameters 
 

Use dialog boxes to specify TRUE values for the uncorrelated components and the 
error standard deviation.  Default values come either from the OLS estimates from 
the current model or else from a previous invocation of this menu item for the current 
model object. 
 

 
 

This item also controls XLisp-Stat random number generator seed/state options: 
 

 
 

These options apply each time a RXridge simulation generates a normal-theory 
response y-vector.  Option “0” means that the same y-vector will be generated every 
time! 
 
A fourth possibility is to use a XLisp command to manually reset the saved 
seed/state: 

 
   (send my-model :RXridge-seed #$(1 #(w x y z))) 

 
where w, x, y and z are numbers with as many as ten digits.  You will probably want 
to use copy/paste for this rather than simply “make up” values because each XLisp 
implementation has its own rules on allowed #$(1 #(w x y z)) state-object 
combinations. 
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List True Shrinkage Details 
 

More details ...again, for possible saving in a permanent “dribble” file.  If you are not 
interested in details, select the next menu item below instead of this one.  However, 
calculations will have to be REDONE if you select this item AFTER the “display” 
item below. 

 
 
Display Expected Traces, True MSE Risks 
 

View Expected Coefficient Traces and Exact, TRUE MSE Risks associated with 
shrinkage along a path of specified Q-shape (when the true standard deviation and 
uncorrelated components are as specified above.) 

 
 
List Shrinkage Simulation Details 
 

Simulation and SE Loss details ...again, for possible saving in a permanent “dribble” 
file.  Results will depend upon the true standard deviation, true uncorrelated 
components, and the initial XLisp random seed/state ...all controlled by the “Specify 
True Values” menu item.  Calculations include Fitted Coefficients and Exact Squared 
Error LOSSES (not Risks = Expected Losses) associated with shrinkage along a path 
of specified Q-shape.  With seed/state options 1=>continue and 2=>new, you should 
get DIFFERENT response y-values fitted coefficients, etc. each time you invoke this 
item. 

 
 
Display Simulated Traces, True SE Losses 
 

View shrinkage trace plots for the simulated normal-theory response vector from the 
MOST RECENT invocation of the above menu item for the current model object.  If 
you skipped the previous item because you weren't interested in details, the necessary 
calculations will be triggered only ONCE (with most printing turned off.) A second 
invocation of this menu item will NOT trigger generation of new simulation results 
(even when the 1=>continue or 2=>new seed/state options are in effect.) To view 
dynamic simulation results, make certain the 1=>continue or 2=>new seed/state 
options are in effect and select this simulation “Display” item only once after each re-
invocation of the simulation “List” item, above. 
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This item also creates a RXridge main-menu named “SIM” to analyze simulated 
response y-values as if the true standard deviation and true uncorrelated components 
were unknown!!! The corresponding model object is always named simply “sim-reg”, 
so multiple invocations must either OVERWRITE the previous “sim-reg” or be 
DISCARDED. 
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Group Six: 
 
Remove this MENU  ...The End!!! 
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