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1. A Personal Summary of 60+ Years of “Shrinkage in Regression” 
 
As someone who has been fascinated with the possibility that shrunken regression coefficient 
estimates can reduce MSE risk via variance-bias trade-offs and who has conducted and published 
research in this area starting in the 1970s, I must say that I am absolutely delighted by the recent 
wide-spread tolerance for (if not outright acceptance of) shrinkage methods.  Anyway, I wish to 
summarize here some personal perspectives on why and how professional statisticians may have 
become somewhat enlightened about shrinkage over the last 60+ years …since ~1955. 
 
Early optimism about a theoretical basis for and the practical advantages of shrinkage almost 
surely started with the work of Stein(1955) and James and Stein(1961).  Unfortunately this 
shrinkage was always “uniform,” thus really doing nothing to adjust the relative magnitudes of 
correlated estimates for this ill-conditioning.  Furthermore, although an overall improvement in 
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the scalar value of “summed MSE risk” was guaranteed, there was no way to know “where,” in 
an X-space of 3 or more dimensions, risk was actually being reduced.  In fact, researchers on 
normal-theory minimax estimation in regression [such as Strawderman(1978) and 
Casella(1980,1985)] found that, when a desired “location” for improved risk was specified, their 
estimates succeeded only by concentrating shrinkage somewhere else!  Actually, the earlier work 
of Brown (1975) and Bunke(1975a, 1975b), was really the beginning of the end for minimax 
research.  After all, only OLS estimation can be minimax when one’s risk measures are truly 
multivariate (matrix rather than scalar valued.)   I personally would like to think that modern 
researchers and regression practitioners view shrinkage estimators as attractive, practical 
alternatives to OLS estimation in ill-conditioned models even though there cannot be any truly 
meaningful way to uniformly “dominate” OLS on MSE risk. 
 
On the other hand, the real gold-rush of interest in (non-uniform) shrinkage in regression is 
undoubtedly due to the pioneering “ridge” work of Hoerl (1962) and Hoerl and Kennard (1970a, 
1970b.)  Some of their terminology was misleading (e.g. their “too longness” argument was 
actually based upon a simple measure of coefficient variability ...rather than “length” of the OLS 
beta-vector), and their conjectures that it should be “easy” to pick shrunken estimators from a 
graphical trace display that would have lower MSE risk than OLS were, in fact, unquestionably 
naïve. 
 
My early ridge-shrinkage papers (1975, 1977, 1978, 1981) lacked focus and simplicity and were 
certainly less impactful than the regression publications of AT&T Bell Labs “giants” like Collin 
Mallows (1973, 1995) and John Tukey (1975). I truly love details, and my papers have always 
been chuck-full of many-too-many alternative concepts.   
 
The most widely accepted forms of shrinkage in regression today are probably the random 
coefficient BLUP estimates from Henderson’s mixed model equations, as implemented in SAS 
proc mixed and the R functions lme() and nlme().  See Robinson (1991), Littel, Milliken, Stroup 
and Wolfinger(1996) and Pinheiro and Bates(1996). 
   
Unfortunately, only three of my papers on shrinkage applicants and software, Obenchain (1984, 
1991, 1995), have been accepted for publication.  As illustrated in Section §3 of this vignette, 
shrinkage TRACE displays reveal “where” MSE risk can be reduced by shrinkage. My closed 
form expressions speed shrinkage estimation and are particularly helpful when simulating MSE 
risk profiles. 
 
My “bottom-line” on the topic of normal-theory ML shrinkage is simply this:  The linear 
estimator identified as being most likely to be optimal is, in reality, a nonlinear estimator.  The 
true MSE risk of this ML shrinkage estimator can be computed exactly in certain special cases 
and can always be accurately simulated.  While having a MSE risk profile that is clearly not 
“dominant” like that of the unknown, optimal linear estimator, achievable ML shrinkage profiles 
can nevertheless be fairly impressive: 

 
In simple rank-one cases, ML shrinkage can reduce MSE risk by about 50% in favorable 
cases (with low signal and/or high uncertainty) while increasing risk by at most 20% in 
unfavorable cases. 
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In high-dimensional situations, a savings of more than 50% is possible, and worst case 
situations result in an increase of less than 5% in MSE risk. 

 
As Burr and Fry(2005) have noted, the key strategy / tactic in shrinkage estimation is definitely 
to be “cautious” rather than “greedy.” 
 
Frank and Freidman(1993), Breiman (1995), Tibshirani (1996), LeBlanc and Tibshirani (1998) 
and Efron et al. (2004) are currently keeping the shrinkage regression “home fires” burning for 
exploratory analyses of gigantic datasets. 
 
 
2. Introduction to Shrinkage Regression Concepts and Notation 

The following formulas define the Q “shape” and the k “extent” of shrinkage yielding 2-
parameter generalized ridge regression estimators. 

* = [ X’X + k × (X’X)Q ]1 X’y 
Our first formula, above, represents the 2-parameter family using notation like that of Goldstein 
and Smith(1974).  Here we have assumed that the response vector, y, and all p columns of the 
(nonconstant) regressors matrix, X, have been “centered” by subtracting off the observed mean 
value from each of the n observations.  Thus Rank(X) = r can exceed neither p nor (n1). 

Insight into the form of the shrinkage path that results as k increases (from zero to infinity) for a 
fixed value of Q is provided by the “singular value decomposition” of the regressor X matrix and 
the corresponding “eigenvalue decomposition” of X’X. 

 

The H matrix above of “regressor principal coordinates” is (n by r) and semi-orthogonal (H’H = 
I.)  And the G matrix of “principal axis direction cosines” is (p by r) and semi-orthogonal (G’G 
= I.)  In the full-column-rank case (r = p), G is orthogonal; i.e. GG’ is then also an identity 
matrix. 

The (r by r) diagonal “Lambda” matrix above contains the ordered and strictly positive 
eigenvalues of X’X;  1   2  …  r > 0.  Thus our operational rule for determining the Q-th 
power of X’X (where Q may not be an integer) will simply be to raise all of the positive 
eigenvalues of X’X to the Q-th power, pre-multiply by G, and post-multiply by G’. 
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Taken together, these decompositions allow us to recognize the above 2-parameter (k and Q) 
family of shrinkage estimators,  * (beta-star), as being a special case of r-dimensional 
generalized ridge regression... 

 

where the (r by r) diagonal  matrix contains the multiplicative shrinkage factors along the r 
principal axes of X. Each of these Delta(i) factors range from 0 to 1 (i = 1, 2, ..., r.) 

Note that the (r by 1) column vector, c, contains the uncorrelated components of the ordinary 
least squares estimate, beta-hat = G c = g1 c1 + g2 c2 + … + gr cr of the unknown, true regression 
coefficient   vector.  The variance matrix of c is the diagonal 1 matrix times the scalar value 
of the error sigma-square.  The P = r = 2 dimensional case is depicted below. 

 

 

In fact, we now see that the 2-parameter family of shrinkage estimators from our first equation, 
above, is the special case of the last equation in which... 
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Q = the ridge parameter that controls the “shape” (or “curvature”) of the ridge path through 

regression coefficient likelihood space. 
 
    Q = +1 ...yields uniform shrinkage (all Shrinkage Factors equal.) 
    Q =  0 ...yields Hoerl-Kennard “ordinary” ridge regression. 

    Q = 5 ...is usually very close, numerically, to “Principal Components Regression,” with exact 
agreement in the limit as Q approaches minus infinity. 

The display below shows a range of shrinkage path Q-shapes for the rank(X) = p = 2 case. 

 

 

The best known special case of a Q-shaped path is probably Q = 0 for Hoerl-Kennard(1970) 
“ordinary” ridge regression. This path has a dual “characteristic property,” illustrated in the 
figure below.  Namely, the Q = 0 path contains not only the shortest beta estimate vector of any 
given likelihood but also the most likely beta estimate of any given length. 
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Another well known special case of a Q-shaped path is Q = +1 for uniform shrinkage. The 
coefficient trace and shrinkage factor trace for this path are both rather “dull,” but the estimated 
risk and inferior direction TRACES can still be interesting even when Q = +1. 

Again, an extremely important limiting case is Q = minus infinity for principal components 
regression.  [Marquardt(1970) called this limit “assigned rank” regression.]  My experience is 
that the Q = 5 path is frequently quite close, numerically, to this limiting case.  Note in the 
figure on page 5 that the path with shape Q = 1 is already somewhat near this limit in the p = 2 
dimensional case depicted there. 

2.1   The m = MCAL = “multicollinearity allowance” parameter 

Unfortunately, the “k” parameter is really not a very good measure of the extent of shrinkage.  
After all, the sizes of the r shrinkage factors, , can depend more on one’s choice of Q than on 
one’s choice of k.  Specifically, the kvalues corresponding to two rather different choices of Q 
are usually not comparable. 

Thus my shrinkage regression algorithms use the m = MCAL = “multicollinearity allowance” 
parameter of Obenchain and Vinod(1974) to index the M-extent of Shrinkage along paths.  This 
parameter is defined as follows: 

 

MCAL  = r  1  2  …  r  = Rank( X )  Trace(  ) 
 

Note that the range of MCAL is finite; MCAL ranges from 0 to r = Rank(X), inclusive. 
Whatever may be your choice of Q-shape, the OLS solution always occurs at the beginning of 
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the shrinkage path at MCAL = 0 (k = 0 and  = I) and the terminus of the shrinkage path, where 
the fitted regression hyperplane becomes “horizontal” (slope=0 in all p-directions of X-space) 
and y-hat = y-bar, always occurs at MCAL = r ( k = + and  = 0 ).  RXridge() uses 
Newtonian descent methods to compute the numerical value of k corresponding to given values 
of MCAL and Q-shape. 

In addition to having finite (rather than infinite) range, MCAL has a large number of other 
advantages over k when used as the scaling for the horizontal axis of ridge trace displays.  For 
example, shrunken regression coefficients with stable relative magnitudes form straight lines 
when plotted versus MCAL. 

 

Similarly, the average value of all r shrinkage factors is (r  MCAL)/r, which is the Theil(1963) 
proportion of Bayesian posterior precision due to sample information (rather than to prior 
information.)  Note that this proportion decreases linearly as MCAL increases. 

Perhaps most importantly, MCAL can frequently be interpreted as the approximate deficiency in 
the rank of X.  For example, if a regressor X’X matrix has only two relatively small eigenvalues, 
then the coefficient ridge trace for best Q-shape typically “stabilizes” at about MCAL = 2.  This 
situation is illustrated below using the ridge coefficient trace for the path of shape Q = 1.5 for 
the original Longley(1967) dataset where the response is y = Employed.  Compared with the 
major initial shifts in relative magnitudes and numerical signs of coefficients between MCAL = 0 
and MCAL = 2, note that the trace below becomes relatively much more stable (somewhat 
“straight”) between MCAL = 2 and MCAL = r = 6.  
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As a general rule-of-thumb, paths with Q-shapes in the [1,+2] range generally tend to be fairly 
smooth ...i.e. have “rounded” corners.  Paths with Q-shapes greater that +2 or less than 1 can 
display quite “sharp” corners.  In fact, the paths with limiting shapes of ± are actually linear 
splines with join points at integer MCAL values! 

My computing algorithms provide strong, objective guidance on the choice of the Q-shape that is 
best for your data.  Specifically, they implement the methods of Obenchain(1975, 1978, 1981) to 
identify the path Q-shape (and the MCAL-extent of shrinkage along that path) which have 
maximum likelihood (under a classical, fixed coefficient, normal-theory model) of achieving 
overall minimum MSE risk in estimation of regression coefficients. 

 

2.2   Shrinkage –factors for Least Angle and Lasso Estimators 

The RXlarlso() and RXuclars() functions in the RXshrink R-package re-interpret lar and 
lasso regression estimators as generalized ridge estimators simply by solving equations such as 

 lar = G lar c 

for the implied -factors.  With the ith column of G again denoted by gi  (as in the figure on page 
5), the solutions of the above r equations are 
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i
lar = gilar / ci    for i = 1, 2, …, r. 

Because these equations clearly do not constrain the resulting lar or lasso “delta-factors” to be 
non-negative and less than +1, the resulting estimates may have neither of these properties.  In 
other words, lar and lasso estimators can correspond to “non-standard” generalized ridge 
estimators and, thus, can correspond to higher MSE risk than would be possible with a true 
“shrinkage” estimator. 
 
On the other hand, the RXuclars() function applies lar estimation directly to the uncorrelated 
components vector, c, and this restriction yields a true generalized ridge (shrinkage) estimator.  
In fact, the delta-factors from RXuclars() will always then be of the following form: 
 

 i
uclars = max[ 0, ( 1 k / |i| ) ], 

 
where i is the ith “principal correlation” …i.e. the correlation between the response y-vector and 
the ith column of the H matrix of “principal coordinates” of X (page 4.)  Note that the k-factor in 
this shrinkage formulation is limited to a subset of [0, 1].  MCAL = 0 occurs at k = 0, while 
MCAL = r results when k is the maximum absolute principal correlation. 
 
3. Interpretation of ridge TRACE Displays 
 
We will use the longley2 numerical example here in Section §3 to illustrate interpretation of 
ridge TRACE displays.  These data, compiled by Art Hoerl using the 1976 “Employment and 
Training Report of the President,” are an updated version of the infamous Longley(1967) dataset 
for benchmarking accuracy of regression computations.  The longley2 data.frame contains 
some slightly different numerical values from those used by Longley(1967) within the original 
16 years (1947 through 1962) and also adds data for 13 subsequent years (1963 through 1975.) 
 
Start by loading the RXshrink package, then execute the following R-code: 
 
  data(longley2) 
  form <- GNP~GNP.deflator+Unemployed+Armed.Forces+Population+Year+Employed 
  rxrobj <- RXridge(form, data=longley2) 
  rxrobj 
 
Because rxrobj is an R-object of class RXridge, the fourth line of code prints the default 
RXridge( ) output.  This output is rather detailed and extensive, so it is abbreviated below. 
 
   Principal Axis Summary Statistics of Ill-Conditioning... 
             LAMBDA         SV         COMP         RHO       TRAT 
     1 124.55432117 11.1603907  0.466590166  0.98409260 179.451944 
     2  34.04395492  5.8347198 -0.009779055 -0.01078296  -1.966301 
     3   7.97601572  2.8241841  0.228918857  0.12217872  22.279619 
     4   1.31429584  1.1464274 -0.557948473 -0.12088200 -22.043160 
     5   0.06505309  0.2550551  0.613987118  0.02959472   5.396677 
     6   0.04635925  0.2153120 -0.471410409 -0.01918176  -3.497845 
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COMP =  6 × 1 vector of Uncorrelated Components of the OLS estimator, c = G’o. 
RHO =  6 × 1 vector of Principal Correlations between the response y and the columns of H.  In 

this example, the first RHO is huge, and the other 5 are all relatively small.  
 
Note that the ill-conditioning in this example is quite extreme.  The last three uncorrelated 
components are (numerically) the three largest.  This is the case only because the 
corresponding singular values, SV = sqrt(LAMBDA), are small.  Again, the last three principal 
correlations are all quite small relative to the only large one, the first. 
  
      Residual Mean Square for Error = 0.0008420418  
      Estimate of Residual Std. Error = 0.02901796  
 
Classical Maximum Likelihood choice of SHAPE(Q) and EXTENT(M) of 
shrinkage in the 2-parameter generalized ridge family... 
       
           Q       CRLQ        M            K    CHISQ 
     1   5.0 0.03065132 5.973237 9.992836e+06 212.2772 
     ... 
     9   1.0 0.52547213 2.111210 5.428963e-01 202.9410 
     10  0.5 0.79341430 1.816359 4.358166e-01 183.5424 
     11  0.0 0.89070908 2.678418 1.513692e+00 166.6511 
     12 -0.5 0.93599740 3.140371 7.907552e+00 151.8817 
     13 -1.0 0.95935445 3.453422 5.035840e+01 139.1481 
     ... 
     20 -4.5 0.98439456 4.586356 3.768549e+08 112.1289 
     21 -5.0 0.98446554 4.729924 4.185069e+09 112.0005 
 
Q = -5  is the path shape most likely to lead to minimum 
MSE risk because this shape maximizes CRLQ and minimizes CHISQ. 
 

RXridge: Shrinkage PATH Shape = -5  RXridge( ) choice of Q. 
 
 
The extent of shrinkage (M value) most likely to be optimal 
in the Q-shape = -5  two-parameter ridge family can depend 
upon whether one uses the Classical, Empirical Bayes, or Random 
Coefficient criterion.  In each case, the objective is to 
minimize the minus-two-log-likelihood statistics listed below: 
            M            K         CLIK       EBAY     RCOF 
 
     0  0.000 0.000000e+00          Inf        Inf      Inf 
     1  0.125 1.216886e-09 1.756397e+12   113.2484 113.7283 
     2  0.250 2.723817e-09 1.759946e+12   112.8258 113.6267 
     3  0.375 4.619196e-09 1.761921e+12   113.3184 114.2927 
     .. 
     37 4.625 2.588153e+09 1.157462e+02  1056.0587 120.4012 
     38 4.750 4.641076e+09 1.121409e+02  1073.4679 120.1243 
     39 4.875 1.062368e+10 1.206503e+02  1124.3692 120.4956 
     .. 
     47 5.875 2.615094e+13 2.083713e+02 29207.1835 208.6979 
     48 6.000          Inf 2.123044e+02 33230.5079 212.3044 
 



Shrinkage in Regression  Page 11 

Before abbreviation, the above listing described 49 choices for the M-extent of shrinkage (m = 
0.0 to m = 6.0 in steps of 0.125.)  The search over this lattice suggests that m = 4.750 minimizes 
the CLIK criterion; the earlier output using the normal-theory closed form expression suggested 
m = 4.7299, which is not on the lattice.  No closed form expressions exist for the EBAY or 
RCOF criteria, but the lattice search suggests that m = 0.250 is best for these criteria, which is 
MUCH less shrinkage than suggested by the CLIK criterion! 
 
Applying the “(2/P)ths Rule-of-Thumb” of Obenchain (1978) with P = 6, it follows that the most 
shrinkage likely to produce a “good” ridge estimator (better than OLS in every MSE sense) 
along the Q = 5 path for the longley2 data is m = 1.58. 
 
With all of the above background information in mind, it is now high time to 
examine and interpret ridge trace displays! 
 

plot(rxrobj)  Default display of all 5 TRACEs. 
 

 
3.1:   Shrinkage Coefficient Trace  
 
The COEFFICIENT trace display shows how point estimates of -coefficients change as shrinkage 
progresses along a path of shape Q.  Coefficient estimates that are numerically “stable” will tend to plot 
close to the straight line from their (left-hand end) least-squares estimates at MCAL=0 to zero at 
MCAL=P (right-hand end.)  Relatively unstable coefficient estimates will change non-linearly, possibly 
switching numerical sign, as MCAL increases.  Super-stable estimates will display traces that initially 
change very little (remaining almost horizontal), finally approaching zero only as MCAL approaches P.  
 

plot(rxrobj, trace = “coef”, trkey = TRUE) 
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Note that most of the clearly undesirable features of the OLS estimates in this longley2 
example have been mitigated once the shrinkage extent reaches at least m = 3.  From that point 
on, four of the six estimates have become essentially equal. 
 

“Wrong Sign” Problem(s): 
 
A theoretical basis for detecting “sign problems” by comparing the numerical signs of 
fitted coefficients with their marginal correlations is provided by Remark (d) on page 
1118 of Obenchain (1978).  When the  vector in my Theorem 2 is parallel to the 
unknown, true , the corresponding optimal generalized ridge estimator is KNOWN to be 
proportional to X’y, a vector that clearly has elements with the same numerical signs as 
the vector of marginal correlations of y with X. 

 
Because the vector of OLS estimates is of the form X+y, its elements can have different 
signs from those of X’y when the data are ill-conditioned. When this does occur, it’s 
relatively bad news!  

 
rxrobj$coef[1,]   OLS regression coefficient estimates 
 
          0.50356   -0.02370     -0.00258    0.82122  -0.47560   0.16119 
 
(cor(longley2))[1:6,7]   marginal correlations between y = GNP 
                                                       and 6 Xs. 
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     GNP.deflator Unemployed Armed.Forces Population      Year  Employed  
           0.9936     0.6967       0.0735     0.9838    0.9479    0.9841 
 

Note that the OLS coefficient for Year is large and negative here.  This signals a major 
“wrong sign” problem because the marginal correlation between GNP and Year is quite 
strongly positive (+0.9479.)  The problem clearly disappears once Q = 5 shrinkage 
reaches m = 3. 
 
Similar (but minor) problems exist due to negative OLS estimates for Unemployed and 
Armed.Forces.  However, these OLS coefficients are already relatively small 
numerically, and the corresponding marginal correlations with GNP are much less 
positive. 

 
 
3.2.   Shrinkage Pattern Trace  
 
The SHRINKAGE PATTERN trace shows how the generalized ridge “Delta Shrinkage-Factors” 
applied to the ordered “uncorrelated components” vector, c, decrease as shrinkage of shape Q 
occurs.  All such delta factors start out as 1 at M=0 (the OLS solution.)  As M increases, all 
deltas remain equal when Q = 1; the trailing deltas are smallest when Q < 1; and the leading 
deltas are smallest when Q > 1. 
 
Colors have somewhat different interpretations in SHRINKAGE PATTERN traces than in the 
COEFFICIENT trace.  In both cases, colors are ordered: FIRST, SECOND, THIRD, 
FOUTRH, FIFTH, SIXTH, etc.  In a COEFFICIENT trace, colors represent the X-variables in 
the order that they were specified in the regression formula: Y ~ X1 + X2 + X3 + X4 + X5 + X6.  
But in a SHRINKAGE PATTERN trace, these same colors represent the regressor principal axes 
in the decreasing order of the eigenvalues of X’X:    1   2  3  …  r > 0.     
 
Since we are following an extreme shrinkage path shape of Q = 5 for the longley2 dataset, we 
see in the SHRINKAGE PATTERN trace displayed below that essentially only the last two out 
of six shrinkage factors, 5 and 6, change between M=0 and M=2.  After all, the last two 
singular values (square roots of eigenvalues of X’X) are nearly equal and are much smaller than 
the other four singular values.  In fact, the last two shrinkage factors have essentially been 
reduced to zero at M=2. 
                                            

plot(rxrobj, trace = “spat”) 
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As shrinkage then continues from M=2 to M=3, the fourth shrinkage factor, 4 , essentially 
decreases from 1 to 0  …while 1, 2 and 3 all remain near 1.  As was clear from the 
COEFFICIENT trace displayed above, the majority of the severe ill-conditioning in the 
longley2 dataset (i.e. switches in -coefficient signs and drastic changes in their relative 
magnitudes) is confined to the last three out of six total principal components of X-space. 
 
3.3.  Relative (or “Scaled”) MSE Risk Trace  
 
The RELATIVE MSE trace displays normal distribution theory, “modified” maximum 
likelihood estimates of “scaled” MSE risk in individual–coefficient estimates as shrinkage of 
shape Q occurs. 
 

Risks are “scaled” by being divided by the usual estimate of the error (disturbance term) 
variance.  In other words, scaled risk expresses imprecision in fitted coefficients as a multiple 
of the variance of a single observation.  Furthermore, when regression disturbance terms are 
assumed to be uncorrelated and homoskedastic, the “scaled” MSE risks of the unbiased OLS 
estimates (at the extreme left of the trace where  = I) are known quantities, being the 
diagonal elements of the (X’X)-1 matrix. 
 
When shrinkage    factors are less than 1, maximum likelihood scaled risk estimates are 
“modified,” first of all, so as to be unbiased under normal theory.  Then they are adjusted 
upward, if necessary, to have correct range relative to a known lower bound on scaled risk, 
which may re-introduce some bias.  
 

As in the COEFFICIENT trace, colors in the RELATIVE MSE trace represent the X-variables in 
the order that they were specified in the regression formula: Y ~ X1 + X2 + X3 + X4 + X5 + X6.   
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In the Relative MSE trace (below) for the longley2 data, shrinkage appears to be injecting 
considerable bias into the 4th (Population) and 5th (Year) -coefficient estimates. 
 

plot(rxrobj, trace = “rmse”) 

 
Changes in the 6th (Employment) -coefficient estimate between M=0 and M=3 first increase 
but then decrease MSE risk.  Initial increases in the 1st (GNP.deflator) -coefficient estimate 
between M=0 and M=2 are relatively unimportant, but subsequent shrinkage increases MSE risk 
at M=3 and beyond.  Increases in the 2nd (Unemployment) -coefficient estimate between 
M=3.5 and M=4.5 also increase MSE risk somewhat. 

 
3.4.  Excess Eigenvalues Trace   
 
The EXCESS EIGENVALUES trace plots the eigenvalues of the estimated difference in Mean 
Squared Error matrices, ordinary least squares (OLS) minus ridge.  As long as all eigenvalues are 
non-negative, there is reason to hope that the corresponding shrunken estimators yield smaller 
MSE risk than OLS in all directions of the r-dimensional space spanned by X-predictors (i.e. all 
possible linear combinations.)  As shrinkage continues, at most one negative eigenvalue will 
appear.  
 
The colors in the EXCESS EIGENVALUE trace represent only the observed order (smallest to 
largest) of these eigenvalues.   Specifically, the SMALLEST (possibly negative) is drawn in 
black, while the SECOND SMALLEST (never negative) is red.  At the top end when the X 
matrix has rank 6, the LARGEST eigenvalue is magenta, while the SECOND LARGEST is 
shown in cyan.   
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In the EXCESS EIGENVALUE trace (below) for the longley2 data, the smallest eigenvalue 
becomes negative at the 3rd computational step of M = 0.250, which also happens to be the 
approximate extent of shrinkage suggested by the EBAY and RCOF likelihood criteria.  The 
negative eigenvalue at M = 0.250 is 3.26 while the corresponding largest eigenvalue is only 
+2.00.  In other words, more MSE “harm” is already being done in the “inferior direction,” 
Obenchain(1978), corresponding to M = 0.250 along the path of shape Q = 5 that in the 
(unspecified) direction of greatest MSE decrease due to shrinkage. 
 

plot(rxrobj, trace = “exev”) 

 
The negative eigenvalue at the M = 4.750 extent of shrinkage suggested by the CLIK criterion is 
1017 while the corresponding two largest eigenvalues are +13.9 and +39.1.  In other words, the 
longley2 dataset is rather clearly very highly ill-conditioned.  In fact, ill-conditioning is 
sufficiently bad that the amount of shrinkage needed to stabilize coefficient relative magnitudes 
(including correction of a “wrong sign” problem in the Year coefficient) cannot be justified from 
a MSE reduction perspective.  
 
3.5.  Inferior Direction-Cosine Trace   
 
The INFERIOR DIRECTION trace displays the direction cosines (elements of the normalized 
eigenvector) corresponding to any negative eigenvalue of the difference in MSE matrices, OLS  
ridge.  This direction gives that single linear combination of ridge regression coefficients that not 
only fails to benefit from ridge shrinkage of shape Q but probably actually suffers increased risk 
due to shrinkage. 
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Because the rows and columns of these MSE matrices are in the order specified on the right-
hand-side of the regression formula Y ~ X1 + X2 + X3 + X4 + X5 + X6, the direction cosines 
relative to these given X axes are colored in this same order.  
   

plot(rxrobj, trace = “infd”) 

 
Interpretation of direction cosines in 6-dimensions can be problematic, to say the least.  Thus we 
will focus here on only relatively simple things that can be seen in an INFERIOR DIRECTION 
trace.  Note that all values in the plot could be multiplied my 1 (turning it upside-down) without 
changing its basic interpretation. 
 
First of all, all fitted regression coefficients have been shrunken to (0, 0, …, 0) at the right-hand 
extreme of all TRACE displays, M = rank(X).  This is usually much-too-much shrinkage, so the 
inferior direction typically points backwards from (0, 0, …, 0) essentially towards the original 
±OLS coefficient vector at M = 0.  In the above plot for the longley2 dataset, the displayed 
direction cosines at M = 6 clearly point to the negative of the original OLS vector.  
 
When two curves on an INFERIOR DIRECTION trace cross, their direction cosines are clearly 
equal at that value of M.  This happens with the cosines for the 1st (GNP.deflator) and 2nd 
(Unemployed) regressors at M = 1.295, where the common cosine value is +0.041.  Thus, at M 
= 1.295, the shrunken estimate of the SUM of the 1st and 2nd -coefficients (0.512) can have 
higher MSE risk than its OLS estimate(0.480); after all, the vector (1,1,0,0,0,0) is clearly NOT 
orthogonal to the inferior direction at M = 1.295.  In sharp contrast, the vector (+1,1,0,0,0,0) IS 
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orthogonal to the inferior direction at M = 1.295, and thus the DIFFERENCE between the 
shrunken estimates of the 1st and 2nd -coefficients (0.513) should have the same or lower MSE 
risk than the corresponding difference in OLS estimates (0.527.) 
 
A similar crossing of cosines for the 5th (Year) and 6th (Employed) regressors occurs at M = 
1.535, where the common cosine value is +0.373.  Thus, at M = 1.535, the shrunken estimate of 
the SUM of the 5th and 6th -coefficients (0.119) can have higher MSE risk than its OLS 
estimate(0.314.)  Meanwhile, the DIFFERENCE between the shrunken estimates of the 5th and 
6th -coefficients (0.656) should have the same or lower MSE risk than the corresponding 
difference in OLS estimates (0.637.) 
 
M-extents of shrinkage such that two regressors have inferior direction cosines with equal 
magnitudes but opposite numerical signs have the opposite effects on the MSE risks of sums and 
differences.  The SUM of the corresponding shrunken coefficients then has the same or reduced 
MSE risk, while the corresponding DIFFERENCE has increased MSE risk.  This happens for the 
1st (GNP.deflator) and 6th (Employed) regressors at M = 2.67, where the direction cosines are 
±0.164.  Unfortunately, shrinkage to M = 2.67 has inappropriately reduced the difference 
between coefficient estimates (from 0.34 to 0.06) while leaving the sum mostly unchanged (0.68 
rather than 0.66.) 
 
 
4.  Interpretation of least angle regression TRACE displays  
 
xlong2 <- as.matrix(longley2[,1:6]) 
ylong2 <- as.matrix(longley2[,7]) 
larsobj <- lars(xlong2,ylong2,type=“lar”) 
plot(larsobj) 

 
   rxlobj <- RXlarlso(form,data=longley2) 
   plot(rxlobj, trace = “coef”) 

 

The first thing to note about the coefficient TRACE displays from the RXlarlso() and 
RXuclars() functions within the RXshrink package is that they are essentially “backwards” 
relative to the default coefficient displays from the lars R-package.  This point is illustrated 
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above.  Close examination of this pair of graphs also shows that, besides being backwards 
relative to each other, there are some additional, rather minor differences between the 
|beta|/max|beta| scaling used along the horizontal axis by lars and the m = Multicollinearity 
Allowance scaling used by RXshrink.  
 
Least angle regression (lar) may yield an initial solution vector that is longer that the OLS vector.  
As explained at the end of Section §2, this means that one or more of the shrinkage “delta” 
factors implied by the lars() estimate starts out being greater than one.  Similarly, as lar 
shrinkage occurs, one or more of these implied delta-factors may eventually become negative.  
These points are illustrated in the graph below. 
 

plot(rxlobj, trace = “spat”) 

 
Reductions in MSE risk relative to OLS usually occur only when all of the delta-factors implied 
by lars() estimates are non-negative and strictly less than +1.  Exceptions can occur when the 
unknown true “gamma” component corresponding to an “out of range” delta-factor is nearly 
zero. 
 
The Q-shape shrinkage paths typically used in “generalized ridge” regression depend upon the 
eigenvalue spectrum of the centered X’X matrix as well as upon the principal correlations 
with the centered response vector, y.  In sharp contrast, the shrinkage paths implied by “least 
angle” regression methods typically depend only upon correlations (marginal or principal) with 
the response y-vector.  As a direct result, the relative sizes of the shrinkage delta-factors implied 
by lars() estimates are not ordered in a predetermined way. 
 
Use of implied delta-shrinkage factors outside of the usual range of [0, 1) can be avoided by use 
of the RXuclars() function rather than the RXlarlso() function illustrated above.  In this 
special case, the principal correlations with the response y-vector determine the implied delta-
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shrinkage factors.  Specifically, the general expression i
uclars = max[ 0, ( 1 k / |i| ) ] then shows 

that the smallest delta-factor will always correspond to the smallest principal correlation.  The 
RXridge() output listed at the top of page 10 shows that the 2nd principal coordinates of X-
predictors have the smallest absolute correlation (0.01078) with the response y-vector for the 
longley2 dataset.  This is also clear in the graph below. 

 
rxuobj <- RXuclars(form,data=longley2) 

plot(rxuobj, trace = “spat”) 

 
Note that, because the 3rd and 4th principal coordinates of X-predictors have nearly equal 
absolute correlations (0.1222 and 0.1209) with the response y-vector, the 3rd and 4th shrinkage 
delta-factors in the above graph are essentially equal. 

 
 

5.   Summary 
 
The RXshrink package for R is fully documented with *.rd* and *.html files.  The additional 
information provided in this vignette [1] comments on the history of shrinkage in regression, [2] 
discusses the 2-parameter family of generalized ridge estimators and interpretation of TRACE 
displays, and [3] orients the shrinkage implied by lars and lasso estimates relative to the principal 
axes of the given X-variables and the uncorrelated components, c, of the OLS  estimator. 
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Visualization of shrinkage regression results requires examination and interpretation of the 
TRACE plots produced by RXshrink functions.  In a trace, r = Rank(X) quantities (several 
estimated coefficients, risks, shrinkage factors, etc.) are plotted vertically against a horizontal 
indicator of the extent of shrinkage.  Traditional TRACES display the OLS solution at their left-
hand extreme and cover the full range of shrinkage that culminates in "total" shrinkage at their 
right-hand extreme (where all “centered” regression coefficient estimates become zero.)   
RXshrink functions require r to be at least 2. 
 
Measures of MSE risk (expected loss) are defined for all forms of statistical distributions, but the 
RXshrink functions focus on Likelihoods implied by assuming that the OLS estimator has a 
multivariate normal distribution with mean vector  and variance 2 I.  The classical, empirical 
Bayes and random coefficient perspectives thus suggest using the extent of shrinkage that 
minimizes the CLIK, EBAY or RCOF 2log(likelihood ratio) criterion, respectively.   
 
A “good” shrinkage estimator, Obenchain(1979), achieves equal or lower matrix-valued MSE 
risk than OLS for the true values of the  and  parameters.  Brown (1975) and Bunke(1975a, 
1975b), showed that no single, realizable estimator can be “good” under normal distribution 
theory for all possible values of  and .  Thus, users of RXshrink functions need to focus 
attention on the question:  “Are the most likely values of the  and  parameters for a given 
regression model either highly favorable to shrinkage or else possibly unfavorable to 
shrinkage?”  Shrinkage TRACES display sample information that goes a long way towards 
“answering” this question, especially the Excess Eigenvalue and Inferior Direction TRACES. 
 

For example, this vignette uses the longley2 dataset to illustrate interpretation of TRACE 
displays, and we have seen that this particular regression problem appears to be quite 
unfavorable to shrinkage.  The original Longley(1967) data and model with y = Employed 
is more favorable to shrinkage.  To see the TRACES for a setup quite favorable to 
shrinkage, the reader can run:   demo(haldport) 
 

Unfortunately, this vignette has not illustrated interpretation of the output from the RXtrisk() 
and RXtsimu() functions.  Obenchain(1984, 1995) discussed uses for these types of TRACES 
based upon early implementations in SAS/IML and Stata, respectively. 
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