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Chapter 8:  BAYESIAN FORMULATIONS

Here in Chapter 8 we discuss Bayesian methods, both hierarchical and empirical, for defining
the form and extent of shrinkage of sample estimates towards a subjective prior distribution.
We find some striking parallels between Bayesian and classical shrinkage methodologies;
formulas for point estimates of regression coefficients can frequently be made to agree exactly.
But we also find profound differences; the Bayesian posterior variance of a point estimate is
larger than the classical variance of that same estimate.  We discuss not only why this type of
difference exists but also point out some specific implications for statistical inference.

8.1 Bayesian Conjugate-Normal Linear-Model Formulations

Lindley and Smith(1972) describe a Bayesian formalism for hierarchical (multi-stage) analyses
of linear models using conjugate multivariate-normal prior distributions.  This formalism
expresses unknown parameters at each stage of an analysis in terms of a linear model at the
previous, lower stage.  But, although dispersion matrices at each stage can be arbitrary, they
must be known.  And, at the final stage, both the mean vector and the dispersion matrix must be
known.  Here, we will be more interested in very simple, 2-stage analyses than in 3-or-more-
stage (priors-on-priors) models.  Thus our discussion will only rarely dwell deeper into Bayes'
theory/practice than what is provided by “classic" reference works such as those of Raiffa and
Schlaifer(1961) and Box and Tiao(1973).

The notation y N(  , D ) will mean here that the column vector y has a multivariate normalµ .
distribution with mean given by the column vector  and variance-covariance matrix given by.
the positive semi-definite matrix D .  Similarly, y |  will mean that the conditional) µ
distribution of y given  is being defined.  In this notation, the fundamental lemma of Lindley and)
Smith(1972), pages 4-5, states that:

LEMMA:  If the sampling distribution of the response, y, is y | N( A   , D  ) , where) )" " " "µ
) ) ) )" " " # # # # is a p 1 parameter vector, and the prior distribution is  |  N( A   , D  )‚ µ
where  is a p 1 parameter vector, then the marginal (unconditional) distribution of y is)# # ‚

y N( A  A   , D   A  D  A  ) { 8.1 }µ �" # # " " # ") T

and the posterior (conditional) distribution of  given y is)"

)" | y N( B b , B ) { 8.2 }µ



Shrinkage Regression: Bayesian Formulations   Chapter 8, Page 3

where B  = A  D  A  + D  and b = A  D  y + D  A   .�" �" �" �" �"
" " # " " #" # #
T T )

To apply this lemma and demonstrate that a simple 2-stage Bayesian formalism produces
generalized shrinkage estimators, we first make the identifications A   = X  and D  = I ." " ") " 52 †
Thus we are using a “point prior" on the error variance (i.e. proceeding as if  where known)52

and B  = X  X + D .  Next, we set the prior mean value for  to ZERO by taking  = �" �# �"
# #5 " )† T

0 and assure that D  (and D ) will be simultaneously diagonalizable with X  X by restricting#
�"

#
T

attention to prior variance-covariance matrices of the general form D  = G K  G , where#
�"52 T†

K is a diagonal R R matrix and G is the P R semi-orthogonal matrix of direction cosines for‚ ‚
the principal axes of X , as in equation { 2.8 }.  Now the Bayes point estimate is the mean, B b ,
of the posterior distribution of  given y ( as well as given X ) and this mean vector is of the"
general form:

E (  | y , X ) = G ( +K)  G  y   G  c = b { 8.3 }" A A ?�" æT œ

as in { 3.1 } , where  =  (  + K )  =  K  (  + K  )  is the diagonal matrix of? A A A�" �" �" �" �"

generalized shrinkage factors and c is the vector of uncorrelated components of the least-squares
estimator.  In other words, we have now demonstrated that all generalized shrinkage estimators
are 2-stage Bayes estimates.  This includes, of course, the special case of shrinkage estimates in
the 2-parameter shrinkage family of { 3.9 } where K = k , the scalar Q determines the shape† AQ

of the shrinkage path, and the scalar k (or, equivalently, MCAL = R ...  ) determines� � �$ $1 R
the extent of shrinkage.  [Bayes estimates of more general form than { 8.3 } can, of course, result
from choices of   0 and/or D   G K  G .]) 5# #

�"Á Á †2 T

The above observation goes a long way, perhaps, towards explaining why many people
apparently think that shrinkage estimation methods are Bayesian.  But, wait a second!  The
Bayesian variance-covariance matrix, B , of the posterior distribution of the regression
coefficient vector,  , given the observed vector of responses, y , ( as well as given X ) is of the"
general form:

V (  | y , X )  ( X  X + G K G  )   G   G  . { 8.4 }" 5 5 ? Aœ † œ †2 T T 2 T�" �"

Note that the implied Bayesian dispersion (variance, co-variance) matrix for G  is theT" #œ
diagonal matrix  and that this matrix has the same functional form as the classical,5 ?A2 �"

fixed-effect minimum risk, { 4.7 }, in G b , which is achieved only when .T MSEæ œ œ?# ? ?
Note, in particular, the Bayesian dispersion is usually larger than the classical dispersion of
equation { 3.4 },

V ( b  | X )  G   G .æ �"œ †5 ? A2 2 T

After all,    when shrinkage factors are restricted to their “usual" range of 0 < 1 for? ? $2
iŸ Ÿ

1 i R.  In fact, strict in-equality (  <  ) holds whenever none of the shrinkage factorsŸ Ÿ ? ?2
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is an actual ZERO.  As we stress below, this difference in dispersion matrices has profound,
practical implications for statistical inference.

Before starting our arguments on why Bayesian variances exceed their classical counter-
parts, we comment that substitution of estimates for unknown parameters into formulas { 8.3 
} and { 8.4 } is commonly known as the “naive" empirical Bayes approach. This approach
is apparently said to be naive because, relative to a full-blown hierarchical Bayes analysis,
variances are thereby under estimated!  For example, Ghosh(1992), pages 153-154,
discusses an analysis that illustrates how naive substitutions ignore the “uncertainty
involved in estimating the prior parameters when estimating the posterior variance."  Then
Ghosh(1992) argues [pages 168-173] that, although the empirical Bayes method of
Morris(1983) is “an attempt to approximate a bonafide hierarchical Bayes procedure, and is
clearly superior to a naive empirical Bayes procedure", variances are then over estimated
by 11% in one example (and might be as much as 30% too large.)  All that I really wish to
stress here is that equation { 8.4 } apparently represents some sort of lower-bound for the
variance of the shrinkage estimator { 8.3 } from Bayesian points-of-view.  And yet this
minimum Bayesian variance can still be considerably larger that the classical variance of
that same estimator.  Here's why...

Bayesian estimators incorporate added information from the prior distribution into the analysis.
In fact, Bayes estimates are considered to be unbiased relative to combined sample and prior
information about  .  In other words, the variance-covariance matrix of a Bayes estimate is also"
its mean-squared-error matrix!  In particular, the rank 1 squared-biases matrix of the classical
formulation, the ( I  ) ( I  ) term in { 4.2 }, is absent from the Bayesian formulation.� �? ## ?T

And every choice for  yields Bayes risks for true components,  , that behave like the? #
minimum classical risks in  c achieved only at .? ? ?œ MSE

From a Bayesian point-of-view, the more drastic is the shrinkage (the smaller is the  )?
imposed by a highly “informative" prior, the better-off one ends-up being!  In other words,
conflict between prior and sample information can be tolerated because “shrinkage" will effect
a compromise.  The more distinct/remote is the prior distribution from the sampling distribution,
the more distinct/remote will be the posterior estimate from the sample estimate.  In fact, one's
prior distribution is more informative in these large-separation cases, and the Bayes posterior
estimate ends up being correspondingly more precise.

Classical fixed-effect analyses of shrinkage estimators assume that bias is being introduced into
the analysis.  The multiplicative -factors in classical shrinkage formulas enter variance$
formulas as -factors.  In other words, the standard deviations (square roots of variances) of$2

classical shrinkage estimators are multiplied by the same -factors as are expected values;$
expected values and standard deviations thus change at exactly the same rate in classical
shrinkage analyses.  This point is illustrated in Figure 8.1 where a shrinkage factor of =0.5$
changes the expected value of an estimate from  to /2 and its standard deviation from  to" " 5
5/2.

         Figure 8.1 The Classical Shrinkage Formulation
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Shrinkage has no effect whatsoever on classical fixed-effect statistical inferences for regression
coefficients that are based upon F-ratios and t-statistics.  After all, a t-statistic is a ratio with an
unbiased estimate of the numerical size of an effect in its numerator and a root-mean-square
estimate of the corresponding standard deviation in its denominator; a F-ratio is the square of a
t-statistic (or a sum-of-squares of several t-statistics with the same denominator).  Anyway,
there are convincing arguments [see Obenchain(1977) for details] that these ratios are actually
invariant under classical shrinkage.  In other words, classical fixed-effect shrinkage does not
produce confidence intervals/regions for regression coefficients that are shifted in location
and/or differnet in size from those derived by ordinary least-squares theory.

ASIDE: One might consider forming a confidence set for  times .  Relative to a classical$ "
confidence set for , the corresponding classical confidence set for  would be shifted in" $ "†
location (being centered at b  ) and would be smaller in size (being based on dispersion s $ $† †o

) whenever 0 1.  On the other hand, confidence sets for  are of relatively littleŸ � †$ $ "
practical interest compared with the confidence set for the full  vector!"

In summary, classical fixed-effect shrinkage methods are best applied on a contingency basis.
The data at hand may provide convincing evidence of reduced dispersion that will more than
offset the introduction of squared-bias, yielding an overall reduction in mean-squared-error.
However, although one has the option of shrinking classical point estimates of regression
coefficients, their corresponding fixed-effect set estimates remain unchanged.  On the other
hand, point and set estimates usually would change or shift, at least a little, if fixed-effects in a
classical model were declared random.  After all, BLUEs are then replaced with shrunken



Shrinkage Regression: Bayesian Formulations   Chapter 8, Page 6

BLUPs and confidence intervals/regions are then constructed using variance-component
estimates!

        Figure 8.2 A Bayesian Shrinkage Formulation

Because Bayesian posterior variances decrease in direct proportion to their  shrinkage factors,$

Bayesian standard deviations decrease at a slower (  ) rate than do their mean values.  This$"Î#

point is illustrated in Figure 8.2, above, where a Bayes shrinkage factor of =0.5 results$
because the sample distribution (centered at ) and the prior distribution (centered at 0) are of"
exactly equal precision, .  This Bayesian shrinkage produces a posterior distribution with5

expected value /2, but the posterior standard deviation is / 2 = 0.707  rather than /2." 5 5 5È
Bayesian formulas for posterior F-ratios and t-statistics that measure differences between a
posterior estimate and its prior mean tend to be “shrunken" in the sense that their numerators
(effect sizes) have decreased more than their denominators (uncertainty measures.)  This, of
course, weakens any evidence that the posterior estimate might be discordant with the prior
mean.  In fact, Bayesian highest-posterior-density intervals/regions resulting from an
informative prior for regression coefficients definitely are shifted in location (towards the
prior) and are smaller in size than are the corresponding classical (frequentist)
intervals/regions.  By incorporating added information from the prior into the analysis, Bayes
procedures end up “shrinking" highest-posterior-density set estimates as well as point estimates
of regression coefficients.
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8.2 Bayesian Diagnostic Checking

Informal methods for determining the effects of changes in one's Bayesian prior distribution
upon the implied posterior distribution are commonly called “sensitivity analyses,"
Winkler(1972).  Modern hardware/software reduces the implied computational burden to the
point where at least some sort of diagnostic checking would seem to be a mandatory component
of even in the most routine of Bayesian analyses.  Box and Tiao(1973) and Berger(1980a,
1980b, 1983) suggest some more formal methods under the general title of Bayesian
“robustness."  And uncertainty about one's prior apparently motivates the 3rd-and-higher stages
in the hierarchical approach of Lindley and Smith(1972).

In his “model adequacy" approach to “assessing the prior" that yields shrinkage regression
estimates [Box(1980), Section §3], Box considers “predictive checks" derived using the
marginal distribution, { 8.1 }.  [This marginal distribution can be called “predictive" in the
sense that it describes the expected behavior of sample data for the current analysis, but this
marginal distribution is definitely distinct from the “predictive" distribution of a future sample,
Zellner and Chetty(1965) or Aitchison and Dunsmore(1975), that results from integrating the
sampling distribution over the posterior distribution.]  In any case, we note that the mean and
variance of the marginal distribution are:

E (  |  X ) = 0   (the prior mean) { 8.5 }"
and

V (  | X )  G ( I   )   G  . { 8.6 }" 5 ? Aœ † �2 T�" �"

Thus, relative to the distribution of sample estimates, the marginal distribution is not only
shifted in location (to the point that it totally ignores sample information!) but also has increased
dispersion.  These points are illustrated in Figure 8.3 where a Bayes shrinkage factor of =0.5$
again results because the sample distribution (centered at ) and the prior distribution (centered"
at 0) are of exactly equal precision, .  Note that the marginal distribution also has an increased5

standard deviation of 2  = 1.414 .È 5 5
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        Figure 8.3 A Bayesian Marginal Distribution

Now Box(1980), equations (3.1) to (3.10), points out that his “predictive check" agrees with the
Theil(1963) measure of the “compatibility of prior and sample information" and is defined as
follows:  For the extent of shrinkage implied by a given set of factors,  , calculate the F-ratio?
that measures the squared-distance between the least-squares estimates vector and the marginal
mean in the metric of the marginal dispersion, namely

Bayes predictive F-ratio  c  ( I   )  c / ( s  R ), { 8.7 }œ �T 2? A

where s  is the sample residual-mean-square.  Then calculate the observed significance level of2

this F-ratio, which is the probability that a random variate with a central F-distribution (with R
numerator degrees-of-freedom and N R 1 denominator degrees-of-freedom) would exceed� �
that observed F value.  This observed significance level allows any choice for the extent of
shrinkage,  , to be “criticized."?

It seems to me, at least, that the corresponding classical statistic would measure the squared-
distance between the least-squares estimates and the shrunken estimates in the metric of the
sampling dispersion, namely

Classical F-ratio  c  ( I   )   c / ( s  R ). { 8.8 }œ �T 2 2? A
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Note that, just as  versus  provide the distinction between the Bayes and classical? ?2

dispersion matrices of { 8.4 } and { 3.4 }, ( I   ) versus ( I   )  provide the distinction� �? ? 2

between the Bayes and classical statistics of equations { 8.7 } and { 8.8 }.   By the way,
Obenchain(1977) called the observed significance level of { 8.8 } the associated probability of
classical ridge shrinkage, while McCabe(1978) termed this same quantity the -acceptability!
for that extent of shrinkage.  Also, note that all significance levels (classical and Bayesian) are
being computed relative to the same central F-distribution (with R numerator degrees-of-
freedom and N R 1 denominator degrees-of-freedom.)� �

Next, note that there is a consistent difference between the Bayesian and classical observed
significance levels associated with a given extent of shrinkage.  Because the classical F-ratio of
{ 8.8 } is almost always smaller, numerically, than is the Bayes' predictive F-ratio of { 8.7 },
its significance level is almost always larger (less significant) than that given by the Bayesian
evaluation of the same shrinkage.  In other words, once a Bayesian becomes “introspective"
about his/her specific choice of location and/or spread for a prior distribution, he/she is almost
always more critical of his/her own choice than a classicist would be when evaluating the exact
same form and extent of shrinkage.

8.3 More Bayes' Measures of the Extent of Shrinkage

There are at least two ways to quantify the extent of shrinkage employed in a given set of Bayes
estimates for linear model coefficients.

Theil(1963) describes a variety of ideas, many of which were expanded on by later authors. For
example, Theil(1963) proposes the “f-class" of mixed (empirical Bayes) estimators for
regression, which provide a form of generalized shrinkage towards an origin space, and
suggests (page 404) that these estimates be plotted as in a ridge TRACE type of display.  And,
as observed earlier, Theil(1963), equation (3.3), describes a special case of equation { 8.7 }.
However, in my opinion, the primary contribution of Theil(1963) is his demonstration of
uniqueness properties of a certain Bayesian measure of extent of shrinkage originally introduced
by Schlaifer.

Theil started by asking a question like... “What proportions of posterior relative precision in a
Bayes estimate are due, respectively, to sample information and to prior information."  This is
like asking... “What are the relative contributions of matrices A and B to the matrix
( A + B )  ?"  Specifically, suppose that a function g( A , B ) is to be our measure the�"

contribution of A to ( A + B ) .  Theil(1963) argued that the following four requirements on g( �"

A , B ) seem reasonable.

(i) Adding-Up Criterion: g( A , B ) + g( B , A )  1 .´

(ii) Zero Unit Criterion: g( 0 , B ) = 0 when B 0Á
 and
 g( A , 0 ) = 1 when A 0 .Á
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(iii) Invariance Under Nonsingular Linear Transformations, K , of Predictors:

g( K A K , K B K )  g( A , B ) .T T ´

(iv) Linearity Criterion:  If A  , B  , A  and B  are such that A  + B  = A  + B  and p and" " # # " " # #
q are two non-negative scalars that sum to one, then

g( p A  + q A  , p B  + q B  )  p g( A  , B  ) + q g( A  , B  ) .† † † † ´ † †" # " # " " # #

Then Theil(1963) demonstrated that the unique measure satisfying all four of the above criteria
is

g( A , B ) = trace[ A ( A + B )  ] / R , { 8.9 }�"

when A and B are R R matrices.  Applying this result to the Bayes posterior variance, { 8.4 },‚
where the sampling precision is A = G  G  and the prior precision is B = G K 5 A 5�# �#† †T

G , we find that the proportion of posterior precision due to sample information isT

g(  , K ) = trace[  (  + K )  ] / R =   / R , { 8.10 }A A A $�" ! i

which is ( R  MCAL ) / R.  In other words, when the multicollinearity allowance is MCAL = �
0 [so that  = I , and no shrinkage gets applied], then all posterior precision derives from?
sample information.  But, at the other extreme of MCAL = R [where   = 0 , and total shrinkage?
to the prior mean is enforced], then none of posterior precision is derived from sample
information.

Lindley(1980) writes that the “only satisfactory inference definition of information is surely
Shannon's" and gives a formula that can be derived as follows:  The Bayes estimator (posterior
mean) of equation { 8.3 } can be written as a linear transformation, b  = ( I + Z ) b  , of theæ �" o

sample (least-squares) estimator, b , where Z = G  K G .  Now Shannon's measure ofo TA�"

information gain, posterior minus prior, is given by the corresponding difference in the expected
values of the log likelihoods.  For an R-dimensional multivariate normal distribution with
dispersion matrix  , the expected log likelihood is E( ln L ) = [ R ln( 2  ) + R + ln | | ] D 1 D� † †1

2
.  As a result, Shannon's measure of information gain can be written as

e † � † � = ln[ | I + Z | / | Z | ] =   ln( 1   ) . { 8.11 }1 1
2 2 i! $

Thus Shannon's measure of information gain is  =  when  = I  [because the priore �_ ?
suggests no shrinkage whatsoever in this extreme case] and  = 0 when  = 0  [because thee ?
posterior and prior coincide in this extreme case.]
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8.4 Nonconjugate Bayes Formulations

I would like to make a couple of observations about nonconjugate Bayes analyses of linear
models even though I am not sufficiently familiar with this literature to critique it here in any
real detail.  The nonconjugate analyses proposed by Draper and Van Nostrand(1977b) and
Berger(1980b,1983) yield regression coefficient estimates of specifically nonlinear form.  Their
resulting risk (mean-squared-error) matrices strike me as being potentially more realistic than { 
8.4 }.  Unfortunately, the equations that define these sorts of estimates are sufficiently
complicated, mathematically, that nothing short of detailed computational experience in applying
these techniques to a wide variety of numerical examples would be adequate to appreciate how
well they might perform in actual practice.

8.5 An Empirical Bayes Likelihood Approach

In his rejoinder to the discussion of his paper, Morris(1983) observes

“Several discussants have gathered that `empirical Bayes' means plugging non-Bayesian
estimates of the prior distribution into Bayes rules.  I believe nothing in the empirical Bayes
paradigm, or in frequency theory for that matter, forbids use of Bayes rules."

I agree and would add the thoughts:  Bayes theorem is, after all, a theorem in classical statistics.
Why should anybody feel hesitant to apply these tools in ways that they feel are appropriate and
reasonable?

The empirical Bayes minus-two-log-likelihood factor of Efron and Morris(1977) for evaluating
the extent of shrinkage is also based upon the marginal (predictive) distribution of equations { 
8.1 }, { 8.5 }, and { 8.6 }.  The minus-twice-log-likelihood resulting from treating the vector of
least squares estimates for regression coefficients as if it were an observation from this
marginal distribution [using the residual-mean-square s  as one's estimate of ] is2 25

� † œ † † † † � � † �2 ln( ML )  R ln( 2 s  ) +  { F ( 1   )  ln[ ( 1   ) ] },1 $ - $2
R

i=1
i i i i!

{ 8.12 }
where F  = c  / s  is again the F-ratio of equation { 2.22 } for testing the statisticali i

2 2
i † -

significance of the i-th uncorrelated component of the least-squares vector.  When actually
applying this criterion, Efron and Morris(1977) suggest simply ignoring all of the terms in { 
8.12 } that do not change as shrinkage occurs.  The factor they suggest computing is thus

EBAY   F ( 1   ) + 2  , { 8.13 }œ † � † e!R
i=1

i i$
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where  =   ln( 1   )  is Shannon's measure of information gain frome � † �1
2 i! $

equation { 8.11 }.
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